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Intuition

Probabilistic program:

I A program with random computations.

I Distributions are conditioned by ‘observations’.

I Values of certain expressions are ‘predicted’ — the output.

Can be written in any language (extended by sample and
observe).



Example: Model Selection

1 (let [;; Model

2 dist (sample (categorical [[normal 1/4] [gamma 1/4]

3 [uniform-discrete 1/4]

4 [uniform-continuous 1/4]]))

5 a (sample (gamma 1 1))

6 b (sample (gamma 1 1))

7 d (dist a b)]

8

9 ;; Observations

10 (observe d 1)

11 (observe d 2)

12 (observe d 4)

13 (observe d 7)

14

15 ;; Explanation

16 (predict :d (type d))

17 (predict :a a)

18 (predict :b b)))



Definition

A probabilistic program is a stateful deterministic computation
P:

I Initially, P expects no arguments.
I On every call, P returns

I a distribution F ,
I a distribution and a value (G , y),
I a value z ,
I or ⊥.

I Upon returning F , P expects x ∼ F .

I Upon returning ⊥, P terminates.

A program is run by calling P repeatedly until termination.

The probability of each trace is ∝
∏|xxx |

i=1 pFi
(xi )

∏|yyy |
j=1 pGj

(yj).
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Inference Objective

I Suggest most probable explanation (MPE) - most likely
assignment for all non-evidence variable given evidence.

I Approximately compute integral of the form

Φ =

∫ ∞
−∞

ϕ(x)p(x)dx

I Continuously and infinitely generate a sequence of
samples drawn from the distribution of the output expression
— so that someone else puts it in good use (vague but
common). X



Example: Inference Results
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[(let [dfreqs (frequencies (map :d predicts))]
  (plot/bar-chart (map (comp #(str/replace % #"class embang.runtime.(.*)-
distribution" "$1") 
                             str first) dfreqs) 
                  (map second dfreqs) 
                  :plot-size 600 :aspect-ratio 4
                  :y-title "sample count"))
 (plot/histogram (map :a predicts) :x-title "a" :bins 30 :plot-size 250 :aspect-
ratio 1.5 
                 :y-title "sample count")
 (plot/histogram (map :b predicts) :x-title "b" :bins 30 :plot-size 250 :aspect-
ratio 1.5)]



Importance Sampling

loop

Run P, computing weight w =
∏|yyy |

j=1 pGj
(yj).

output zzz ,w .
end loop

I Simple — good.

I Slow convergence (unless one knows the answer) — bad.

Can we do better?



Lightweight Metropolis-Hastings (LMH)

Run P once, remember xxx ,zzz .
loop

Uniformly select xi .
Propose a value for xi .
Run P, remember x ′x ′x ′,z ′z ′z ′.
Accept (x , zx , zx , z = x ′, z ′x ′, z ′x ′, z ′) or reject with MH probability.
Output zzz .

end loop

Can we do better?



Adaptive MCMC

Adaptation opportunities:

1. Random walk (instead of proposing from priors).

2. Adapting random walk parameters.

3. Selecting each xi with different probability. X
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Lightweight MH with Adaptive Scheduling

Maintains vector of weights WWW of random choices:

1: Initialize WWW 0 to a constant.
2: Run P once.
3: for t = 1 . . .∞ do

4: Select x ti with probability αt
i = W t

i /
|xxx t |∑
i=1

W t
i .

5: Propose a value for x ti .
6: Run P, accept or reject with MH probability.
7: if accepted then
8: Compute WWW t+1 based on the program output.
9: else

10: WWW t+1 ←WWW t

11: end if
12: end for



Quantifying Influence of Program Output

I Objective: faster convergence of program output zzz .

I Adaptation parameter: probabilities of selecting random
choices for modification.

I Optimization target: maximize the change in the program
output:

Rt =
1

|zzz t |

|zzz t |∑
k=1

11(z tk 6= z t−1k ).

Wi reflects the anticipated change in zzz from modifying xi .



Delayed Changes

Modifying x2 affects the output ...

1 (let [x1 (sample (normal 1 10))

2 x2 (sample (normal x1 1))]

3 (observe (normal x2 1) 2)

4 (predict x1))

... but only when x1 is also modified.



Backpropagating rewards

I For each xi , reward ri and count ci are kept.

I A history of modified random choices is attached to every zj .

When modification of xk accepted:

1: Append xk to the history.
2: if zzz t+1 6= zzz t then
3: w ← 1

|history |
4: for xm in history do
5: rm ← rm + w , cm ← cm + w
6: end for
7: Flush the history.
8: else
9: ck ← ck + 1

10: end if
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Convergence — GP hyperparameter estimation

f ∼GP(m, k),

where m(x) =ax2 + bx + c , k(x , x) = de
(x−x′)2

2g .
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Sample Size — Kalman Smoother

x t ∼ Norm(A · x t−1,Q), y t ∼ Norm(C · x t ,R).

A =

[
cosω − sinω
sinω cosω

]
, Q =

[
q 0
0 q

]
.
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Summary

I A scheme of rewarding random choices based on program
output.

I An approach to propagation of choice rewards to MH proposal
scheduling parameters.

I An application of this approach to LMH, where the
probabilities of selecting each variable for modification are
adjusted.



Thank You
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