Output-Sensitive Adaptive Metropolis-Hastings for Probabilistic Programs

David Tolpin, Jan Willem van de Meent, Brooks Paige, Frank Wood University of Oxford

May 11th, 2015

Paper: http://arxiv.org/abs/1501.05677 Slides: http://offtopia.net/almh-slides.pdf

Probabilistic Programming

Inference

Output-sensitive Adaptive Metropolis-Hastings

Empirical Evaluation

Intuition

Probabilistic program:

- A program with random computations.
- Distributions are conditioned by 'observations'.
- ► Values of certain expressions are 'predicted' **the output**.

Can be written in any language (extended by sample and observe).

Example: Model Selection

```
(let [;; Model
1
             dist (sample (categorical [[normal 1/4] [gamma 1/4]
2
                                            [uniform-discrete 1/4]
3
                                            [uniform-continuous 1/4]]))
4
             a (sample (gamma 1 1))
\mathbf{5}
             b (sample (gamma 1 1))
6
             d (dist a b)]
7
8
        :: Observations
9
        (observe d 1)
10
        (observe d 2)
11
        (observe d 4)
12
        (observe d 7)
13
14
        ;; Explanation
15
         (predict :d (type d))
16
        (predict :a a)
17
         (predict :b b)))
18
```

Definition

A **probabilistic program** is a stateful deterministic computation \mathcal{P} :

- Initially, \mathcal{P} expects no arguments.
- On every call, ${\cal P}$ returns
 - a distribution F,
 - a distribution and a value (G, y),
 - ► a value z,
 - or ⊥.
- Upon returning F, \mathcal{P} expects $x \sim F$.
- Upon returning \perp , \mathcal{P} terminates.

A program is run by calling \mathcal{P} repeatedly until termination. The probability of each **trace** is $\propto \prod_{i=1}^{|\mathbf{x}|} p_{F_i}(x_i) \prod_{i=1}^{|\mathbf{y}|} p_{G_i}(y_j)$.

Probabilistic Programming

Inference

Output-sensitive Adaptive Metropolis-Hastings

Empirical Evaluation

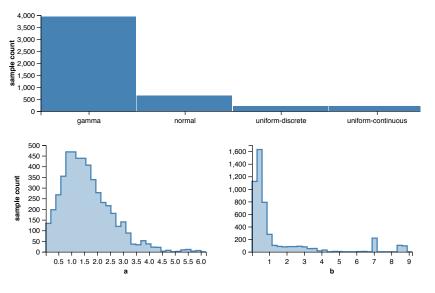
Inference Objective

- Suggest most probable explanation (MPE) most likely assignment for all non-evidence variable given evidence.
- Approximately compute integral of the form

$$\Phi = \int_{-\infty}^{\infty} \varphi(x) p(x) dx$$

 Continuously and infinitely generate a sequence of samples drawn from the distribution of the output expression
 — so that someone else puts it in good use (vague but common). ✓

Example: Inference Results



æ (日)、

Importance Sampling

loop

Run
$$\mathcal{P}$$
, computing weight $w = \prod_{j=1}^{|\mathbf{y}|} p_{G_j}(y_j)$.
output \mathbf{z}, w .
end loop

- Simple good.
- ▶ Slow convergence (unless one knows the answer) bad.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Can we do better?

Lightweight Metropolis-Hastings (LMH)

```
Run \mathcal{P} once, remember \boldsymbol{x}, \boldsymbol{z}.

loop

Uniformly select x_i.

Propose a value for x_i.

Run \mathcal{P}, remember \boldsymbol{x'}, \boldsymbol{z'}.

Accept (\boldsymbol{x}, \boldsymbol{z} = \boldsymbol{x'}, \boldsymbol{z'}) or reject with MH probability.

Output \boldsymbol{z}.

end loop
```

Can we do better?

Adaptation opportunities:

1. Random walk (instead of proposing from priors).

- 2. Adapting random walk parameters.
- 3. Selecting each x_i with different probability. \checkmark

Probabilistic Programming

Inference

Output-sensitive Adaptive Metropolis-Hastings

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Empirical Evaluation

Lightweight MH with Adaptive Scheduling

Maintains vector of weights \boldsymbol{W} of random choices:

- 1: Initialize \boldsymbol{W}^0 to a constant.
- 2: Run \mathcal{P} once.
- 3: for $t = 1 \dots \infty$ do

4: Select
$$x_i^t$$
 with probability $\alpha_i^t = W_i^t / \sum_{i=1}^{|\mathbf{X}^t|} W_i^t$.

1 +1

5: Propose a value for
$$x_i^t$$
.

- 6: Run \mathcal{P} , accept or reject with MH probability.
- 7: if accepted then
- 8: Compute \boldsymbol{W}^{t+1} based on the *program output*.
- 9: **else**
- 10: $\pmb{W}^{t+1} \leftarrow \pmb{W}^{t}$
- 11: end if
- 12: end for

Quantifying Influence of Program Output

- Objective: faster convergence of program output z.
- Adaptation parameter: probabilities of selecting random choices for modification.
- Optimization target: maximize the change in the program output:

$$R^{t} = rac{1}{|m{z}^{t}|} \sum_{k=1}^{|m{z}^{t}|} \mathbf{1}(z_{k}^{t} \neq z_{k}^{t-1}).$$

 W_i reflects the anticipated change in z from modifying x_i .

Modifying x2 affects the output ...

... but only when x1 is also modified.

Backpropagating rewards

- For each x_i , reward r_i and count c_i are kept.
- ► A history of modified random choices is attached to every z_j.

When modification of x_k accepted:

1: Append
$$x_k$$
 to the history.
2: **if** $z^{t+1} \neq z^t$ **then**
3: $w \leftarrow \frac{1}{|history|}$
4: **for** x_m **in** history **do**
5: $\overline{r}_m \leftarrow r_m + w, \ c_m \leftarrow c_m + w$
6: **end for**
7: Flush the history.
8: **else**
9: $c_k \leftarrow c_k + 1$

10: end if

Probabilistic Programming

Inference

Output-sensitive Adaptive Metropolis-Hastings

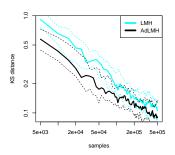
◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

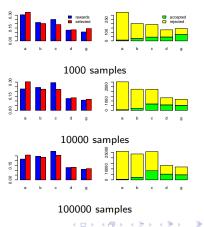
Empirical Evaluation

Convergence — GP hyperparameter estimation

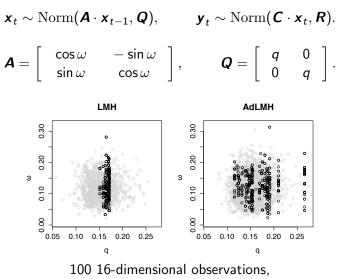
$$f \sim \mathcal{GP}(m, k),$$

where $m(x) = ax^2 + bx + c, \quad k(x, x) = de^{\frac{(x-x')^2}{2g}}$





Sample Size — Kalman Smoother



500 samples after 10 000 samples of burn-in.

Probabilistic Programming

Inference

Output-sensitive Adaptive Metropolis-Hastings

Empirical Evaluation

Summary

- A scheme of rewarding random choices based on program output.
- An approach to propagation of choice rewards to MH proposal scheduling parameters.

 An application of this approach to LMH, where the probabilities of selecting each variable for modification are adjusted.

Thank You

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>