
Output-Sensitive Adaptive Metropolis-Hastings
for Probabilistic Programs

David Tolpin, Jan Willem van de Meent,
Brooks Paige, Frank Wood

University of Oxford

May 11th, 2015

Paper: http://arxiv.org/abs/1501.05677

Slides: http://offtopia.net/almh-slides.pdf

http://arxiv.org/abs/1501.05677
http://offtopia.net/almh-slides.pdf

Outline

Probabilistic Programming

Inference

Output-sensitive Adaptive Metropolis-Hastings

Empirical Evaluation

Summary

Intuition

Probabilistic program:

I A program with random computations.

I Distributions are conditioned by ‘observations’.

I Values of certain expressions are ‘predicted’ — the output.

Can be written in any language (extended by sample and
observe).

Example: Model Selection

1 (let [;; Model

2 dist (sample (categorical [[normal 1/4] [gamma 1/4]

3 [uniform-discrete 1/4]

4 [uniform-continuous 1/4]]))

5 a (sample (gamma 1 1))

6 b (sample (gamma 1 1))

7 d (dist a b)]

8

9 ;; Observations

10 (observe d 1)

11 (observe d 2)

12 (observe d 4)

13 (observe d 7)

14

15 ;; Explanation

16 (predict :d (type d))

17 (predict :a a)

18 (predict :b b)))

Definition

A probabilistic program is a stateful deterministic computation
P:

I Initially, P expects no arguments.
I On every call, P returns

I a distribution F ,
I a distribution and a value (G , y),
I a value z ,
I or ⊥.

I Upon returning F , P expects x ∼ F .

I Upon returning ⊥, P terminates.

A program is run by calling P repeatedly until termination.

The probability of each trace is ∝
∏|xxx |

i=1 pFi
(xi)

∏|yyy |
j=1 pGj

(yj).

Outline

Probabilistic Programming

Inference

Output-sensitive Adaptive Metropolis-Hastings

Empirical Evaluation

Summary

Inference Objective

I Suggest most probable explanation (MPE) - most likely
assignment for all non-evidence variable given evidence.

I Approximately compute integral of the form

Φ =

∫ ∞
−∞

ϕ(x)p(x)dx

I Continuously and infinitely generate a sequence of
samples drawn from the distribution of the output expression
— so that someone else puts it in good use (vague but
common). X

Example: Inference Results

[

]

gamma normal uniform-discrete uniform-continuous
0

500
1,000
1,500
2,000
2,500
3,000
3,500
4,000

sa
m

pl
e

co
un

t

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0
a

0
50
100
150
200
250
300
350
400
450
500

sa
m

pl
e

co
un

t

1 2 3 4 5 6 7 8 9
b

0

200

400

600

800

1,000

1,200

1,400

1,600

[(let [dfreqs (frequencies (map :d predicts))]
 (plot/bar-chart (map (comp #(str/replace % #"class embang.runtime.(.*)-
distribution" "$1")
 str first) dfreqs)
 (map second dfreqs)
 :plot-size 600 :aspect-ratio 4
 :y-title "sample count"))
 (plot/histogram (map :a predicts) :x-title "a" :bins 30 :plot-size 250 :aspect-
ratio 1.5
 :y-title "sample count")
 (plot/histogram (map :b predicts) :x-title "b" :bins 30 :plot-size 250 :aspect-
ratio 1.5)]

Importance Sampling

loop

Run P, computing weight w =
∏|yyy |

j=1 pGj
(yj).

output zzz ,w .
end loop

I Simple — good.

I Slow convergence (unless one knows the answer) — bad.

Can we do better?

Lightweight Metropolis-Hastings (LMH)

Run P once, remember xxx ,zzz .
loop

Uniformly select xi .
Propose a value for xi .
Run P, remember x ′x ′x ′,z ′z ′z ′.
Accept (x , zx , zx , z = x ′, z ′x ′, z ′x ′, z ′) or reject with MH probability.
Output zzz .

end loop

Can we do better?

Adaptive MCMC

Adaptation opportunities:

1. Random walk (instead of proposing from priors).

2. Adapting random walk parameters.

3. Selecting each xi with different probability. X

Outline

Probabilistic Programming

Inference

Output-sensitive Adaptive Metropolis-Hastings

Empirical Evaluation

Summary

Lightweight MH with Adaptive Scheduling

Maintains vector of weights WWW of random choices:

1: Initialize WWW 0 to a constant.
2: Run P once.
3: for t = 1 . . .∞ do

4: Select x ti with probability αt
i = W t

i /
|xxx t |∑
i=1

W t
i .

5: Propose a value for x ti .
6: Run P, accept or reject with MH probability.
7: if accepted then
8: Compute WWW t+1 based on the program output.
9: else

10: WWW t+1 ←WWW t

11: end if
12: end for

Quantifying Influence of Program Output

I Objective: faster convergence of program output zzz .

I Adaptation parameter: probabilities of selecting random
choices for modification.

I Optimization target: maximize the change in the program
output:

Rt =
1

|zzz t |

|zzz t |∑
k=1

11(z tk 6= z t−1k).

Wi reflects the anticipated change in zzz from modifying xi .

Delayed Changes

Modifying x2 affects the output ...

1 (let [x1 (sample (normal 1 10))

2 x2 (sample (normal x1 1))]

3 (observe (normal x2 1) 2)

4 (predict x1))

... but only when x1 is also modified.

Backpropagating rewards

I For each xi , reward ri and count ci are kept.

I A history of modified random choices is attached to every zj .

When modification of xk accepted:

1: Append xk to the history.
2: if zzz t+1 6= zzz t then
3: w ← 1

|history |
4: for xm in history do
5: rm ← rm + w , cm ← cm + w
6: end for
7: Flush the history.
8: else
9: ck ← ck + 1

10: end if

Outline

Probabilistic Programming

Inference

Output-sensitive Adaptive Metropolis-Hastings

Empirical Evaluation

Summary

Convergence — GP hyperparameter estimation

f ∼GP(m, k),

where m(x) =ax2 + bx + c , k(x , x) = de
(x−x′)2

2g .

5e+03 2e+04 5e+04 2e+05 5e+05

0.
1

0.
2

0.
5

1.
0

samples

K
S

 d
is

ta
nc

e

LMH
AdLMH

a b c d g

0.
00

0.
15

0.
30

rewards
selected

a b c d g

0
10

0
25

0 accepted
rejected

1000 samples

a b c d g
0.

00
0.

15
0.

30
a b c d g

0
10

00
25

00

10000 samples

a b c d g

0.
00

0.
15

a b c d g

0
10

00
0

25
00

0
100000 samples

Sample Size — Kalman Smoother

x t ∼ Norm(A · x t−1,Q), y t ∼ Norm(C · x t ,R).

A =

[
cosω − sinω
sinω cosω

]
, Q =

[
q 0
0 q

]
.

0.05 0.10 0.15 0.20 0.25

0
.0
0

0
.1
0

0
.2
0

0
.3
0

LMH

q

ω

0.05 0.10 0.15 0.20 0.25

0
.0
0

0
.1
0

0
.2
0

0
.3
0

AdLMH

q

ω

100 16-dimensional observations,
500 samples after 10 000 samples of burn-in.

Outline

Probabilistic Programming

Inference

Output-sensitive Adaptive Metropolis-Hastings

Empirical Evaluation

Summary

Summary

I A scheme of rewarding random choices based on program
output.

I An approach to propagation of choice rewards to MH proposal
scheduling parameters.

I An application of this approach to LMH, where the
probabilities of selecting each variable for modification are
adjusted.

Thank You

	Probabilistic Programming
	Inference
	Output-sensitive Adaptive Metropolis-Hastings
	Empirical Evaluation
	Summary

