IJCAI 2011

BACKGROUND

Constraint Satisfaction

A constraint satisfaction problem (CSP) is defined by:

variables
$$X = \{X_1, X_2, \dots\}$$
;
constraints $C = \{C_1, C_2, \dots\}$

- Each $variable X_i$ has a non-empty domain D_i of possible values.
- Each *constraint* C_i involves some subset of the variables—the *scope* of the constraint—and specifies the allowable combinations of values for that subset.
- An *assignment* that does not violate any constraints is called *consistent* (or solution).

Rational Metareasoning

- A problem-solving agent can perform base-level actions from a known set $\{A_i\}$.
- Before committing to an action, the agent may perform a sequence of meta-level deliberation actions from a set $\{S_j\}$.
- At any given time there is a base-level action A_{α} that maximizes the agent's expected utility.

The **net VOI** $V(S_j)$ of action S_j is the intrinsic VOI Λ_j less the cost of S_j :

$$V(S_j) = \Lambda(S_j) - C(S_j)$$

The intrinsic VOI $\Lambda(S_j)$ is the expected difference between the intrinsic expected utilities of the new and the old selected base-level action, computed after the meta-level action is taken:

$$\Lambda(S_j) = E[EU(A_\alpha^J) - EU(A_\alpha)]$$

- $S_{j_{\text{max}}}$ that maximizes the net VOI is performed: $j_{\text{max}} = \arg\max_{j} V(S_{j})$ if $V(S_{j_{\text{max}}}) > 0$.
- Otherwise, A_{α} is performed.

OVERVIEW

A heuristic must be both informative and efficient to compute.

Overhead of some well-known heuristics may outweigh the gain.

Such heuristics should be deployed adaptively.

Case Study

- CSP backtracking search algorithms typically employ variable-ordering and value-ordering heuristics.
- Some value ordering heuristics are computationally heavy, e.g. heuristics based on solution count estimates.
- Principles of rational metareasoning can be applied to decide when to deploy the heuristics.

VALUE ORDERING

Value ordering heuristics convey information about:

- T_i —the expected time to find a solution with $X_k = y_{ki}$;
- p_i —the probability that there is no solution with $X_k = y_{ki}$.

The expected remaining search time in the subtree under X_k for ordering ω is:

$$T^{s|\omega} = T_{\omega(1)} + \sum_{i=2}^{|D_k|} T_{\omega(i)} \prod_{j=1}^{i-1} p_{\omega(j)}$$

- The current optimal base-level action is picking the ω which minimizes $T^{s|\omega}$.
- The intrinsic VOI Λ_i of estimating T_i , p_i for the *i*th assignment is the expected decrease in $T^{s|\omega}$: $\Lambda_i = \mathbb{E}[T^{s|\omega_-} T^{s|\omega_+i}]$.
- Computing new estimates (with overhead T^c) for values T_i , p_i is beneficial when the net VOI is positive: $V_i = \Lambda_i T^c$.

MAIN RESULTS

Rational Value Ordering

The intrinsic VOI Λ_i of invoking the heuristic can be approximated as:

$$\Lambda_i \approx \mathrm{E}[(T_1 - T_i)|D_k| \mid T_i < T_1]$$

VOI of Solution Count Estimates

The net VOI V of estimating a solution count can be approximated as:

$$V \propto |D_k| e^{-\nu} \sum_{n=n_{\text{max}}}^{\infty} \left(\frac{1}{n_{\text{max}}} - \frac{1}{n}\right) \frac{\nu^n}{n!} - \gamma$$

where the constant γ depends on the search algorithm and the heuristic, rather than on the CSP instance, and can be learned offline.

EXPERIMENTS

Benchmarks

14 benchmarks from CSP Solver Competition 2005:

- for y = 0;
- for the range $y \in \{10^{-7}, 10^{-6}, \dots, 1\}$,
- with the *minimum-conflicts* and the *pAC* heuristics.

The maximum improvement is achieved when the solution count is estimated in a small fraction of occasions.

Random instances (Model RB)

Exhaustive deployment, rational deployment, the *minimum* conflicts and the pAC heuristics were compared on two sets of 100 problem instances.

a. Easier instances

 $\gamma = 10^{-3}$ based on a small set of hard instances gave good results on sets of instances of varying size and hardness.

Generalized Sudoku

- Real-world problem instances have much more structure than Model RB random instances.
- The experiments were repeated on random

 Generalized Sudoku instances

 a highly structured domain.
- Relative performance was similar to Model RB.

SUMMARY

- A model for adaptive deployment of value ordering heuristics in algorithms for constraint satisfaction problems.
- Steady improvement compared to exhaustive deployment for an heuristic based on solution count estimates.
- The optimum performance is achieved when solution counts are estimated only in a small number of search states.

FUTURE WORK

- Generalization of the VOI to deploy different types of heuristics for CSP.
- Explicit evaluation of the quality of the distribution model, coupled with a better candidate model of the distribution.
- Application to search in other domains, especially to heuristics for planning; in particular, examining whether the meta-reasoning scheme can improve reasoning over deployment based solely on learning.

Acknowledgments

- IMG4 Consortium under the MAGNET program of the Israeli Ministry of Trade and Industry
- Lynne and William Frankel Center for Computer Sciences

- Israel Science Foundation grant 305/09
- Paul Ivanier Center for Robotics Research and Production Management

