Selecting Computations in Sequential Decision Problems

David Tolpin

Ben-Gurion University of the Negev
Beer Sheva, Israel

March 12, 2014
Introduction

Rational Metareasoning

VOI-aware Monte Carlo Tree Sampling

Towards Rational Deployment of Multiple Heuristics in A*

Insights into the Methodology
Outline

Introduction

Rational Metareasoning

VOI-aware Monte Carlo Tree Sampling

Towards Rational Deployment of Multiple Heuristics in A*

Insights into the Methodology
Sequential Decision Problems

- The agent selects actions based on outcomes of earlier actions.
- A solution is a *contingency plan*: a function from the history of actions and their outcomes to the next action.
- The optimal solution maximizes the *expected reward*. The reward is a known function of the history of actions and outcomes.
Sailing Domain
Multi-Armed Bandit
Board Games

- Backgammon
- Checkers
- Chess
- Computer Go
From Tel Aviv to Jerusalem

- the agent plans a journey from Tel Aviv to Jerusalem.
- there are two main routes - 1 and 443.
- the agent has a prior belief about travel time distribution.
- the agent can make a phone call to inquire about each of the routes.
1. the agent wants to minimize the time on the road:
 \[u(t) = -t \]

2. the agent has to arrive by a particular time \(T \):
 \[u(t) = 1 \text{ if } t \leq T, -1 \text{ otherwise.} \]

3. the agent wants to minimize the time on the road, but has to arrive by a particular time:
 \[u(t) = 1 - \frac{t}{T} \text{ if } t \leq T, -1 \text{ otherwise.} \]
From Tel Aviv to Jerusalem: prior belief

Prior belief.
From Tel Aviv to Jerusalem: updated 1

1 updated.
From Tel Aviv to Jerusalem: updated 443

443 updated.
From Tel Aviv to Jerusalem: updated 1 and 443

Both 1 and 443 updated.
From Tel Aviv to Jerusalem: updated 1 and 443 with cost

Both 1 and 443 updated, phone call duration 3 minutes.
Outline

Introduction

Rational Metareasoning

VOI-aware Monte Carlo Tree Sampling

Towards Rational Deployment of Multiple Heuristics in A*

Insights into the Methodology
Rational Metareasoning

- A problem-solving agent can perform base-level actions from a known set \{A_i\}.
- Before committing to an action, the agent may perform a sequence of meta-level deliberation actions from a set \{S_j\}.
- At any given time there is a base-level action \(A_\alpha\) that maximizes the agent’s expected utility.

The net VOI \(V(S_j)\) of action \(S_j\) is the intrinsic VOI \(\Lambda(j)\) less the cost of \(S_j\):

\[
V(S_j) = \Lambda(S_j) - C(S_j)
\]

\[
\Lambda(S_j) = \mathbb{E} \left(\mathbb{E}(U(A^{j}_\alpha)) - \mathbb{E}(U(A_\alpha)) \right)
\]

- \(S_{j_{\text{max}}}\) that maximizes the net VOI is performed:
 \(j_{\text{max}} = \arg\max_j V(S_j), \text{ if } V(S_{j_{\text{max}}}) > 0\).
- Otherwise, \(A_\alpha\) is performed.
Greedy Algorithm

1. Assign initial beliefs
2. Budget left?
 - Yes: Update beliefs
 - No: Choose measurement with the greatest VOI
3. VOI positive?
 - Yes: Measure
 - No: Select an item with the greatest utility estimate
Simplifying assumptions

- **Myopicity:**
 - Meta-greedy: consider only the effect of single computational actions.
 - Single-step: Assume all computations are complete, act as though a base-level action immediately follows the computation.

- **Subtree independence:** any computation updates the expected utility of a single action.
Outline

Introduction

Rational Metareasoning

VOI-aware Monte Carlo Tree Sampling

Towards Rational Deployment of Multiple Heuristics in A*

Insights into the Methodology
Monte Carlo Tree Search helps in large search spaces. At each node:

- **Selection**: select an action to explore.
- **Simulation**: simulates a rollout until a goal is reached.
- **Backpropagation**: updates the action value.

Selects the best action.

Adaptive Generally, MCTS samples ‘good’ moves more frequently, but sometimes explores new directions.
Multi-armed Bandit Problem

Multi-armed Bandit Problem:

- We are given a set A of K arms, $A = \{1..K\}$.
- Each arm can be pulled multiple times.
- The reward X^j for the jth arm is drawn from an unknown (but normally stationary and bounded) distribution with mean μ_j.
- The total reward must be maximized over the budget of N samples.

The expected total regret r_{total} of a sampling policy π for MAB is the difference between the expected reward from always pulling the best arm and the expected total reward of the policy.

$$r_{total} = N \max_{j \in A} \mu_j - \mathbb{E}\left(\sum_{i=1}^{N} x^i_j \right)$$ (1)
UCB

UCB is near-optimal for MAB — solves *exploration/exploitation* tradeoff.

- pulls an arm that maximizes **Upper Confidence Bound**:
 \[b_i = \bar{X}_i + \sqrt{\frac{c \log(n)}{n_i}} \]
- the expected total regret is \(O(\log n) \).
UCT (Upper Confidence Bounds applied to Trees) is based on UCB.

- Adaptive MCTS.
- Applies the UCB selection scheme at each step of the rollout.
- Demonstrated good performance in Computer Go (MoGo, CrazyStone, Fuego, Pachi, ...) as well as in other domains.

However, the first step of a rollout is different:

- The purpose of MCTS is to choose an action with the greatest utility.
- Therefore, the **simple regret** must be minimized.
Simple Regret

The **simple regret** of a sampling policy for MAB is the expected difference between the best expected reward $\max_{j \in A} \mu_j$ and the expected reward μ_j of the empirically best arm $\max_i \overline{X}_i$:

$$E r_{\text{simple}} = \max_{j \in A} \mu_j - E(\max_i \overline{X}_i)$$ \hspace{1cm} (2)
MCTS Tree: Selection & Estimation

- Selection
- Estimation
- Reuse
Upper Bounds on Value of Information

Assuming that:

1. Samples are i.i.d. given the value of the arm.
2. The expectation of a selection in a belief state is equal to the sample mean.

Upper bounds on intrinsic VOI Λ^b_i of testing the ith arm N times are (based on Hoeffding inequality):

$$\Lambda^b_i \alpha < \frac{N\bar{X}^{n_\beta}}{n_\alpha + 1} \cdot 2 \exp\left(-1.37 (\bar{X}_{\alpha}^{n_\alpha} - \bar{X}_{\beta}^{n_\beta})^2 n_\alpha\right)$$

$$\Lambda^b_i | i \neq \alpha < \frac{N(1 - \bar{X}^{n_\alpha})}{n_i + 1} \cdot 2 \exp\left(-1.37 (\bar{X}_{\alpha}^{n_\alpha} - \bar{X}_{i}^{n_i})^2 n_i\right)$$

Tighter bounds can be obtained (see the paper).
VOI-based Sampling in Bernoulli Selection Problem

25 arms, 10000 trials:

UCB1 is always worse than VOI-aware policies (VOI, VOI+).
Sampling in Trees

- **Hybrid sampling scheme:**
 1. At the *root node*: sample based on the VOI estimate.
 2. At *non-root nodes*: sample using UCT.

- **Stopping criterion:** Assuming sample cost c is known, stop sampling when intrinsic VOI is less than $C = cN$:

$$\frac{1}{N} \Lambda^b \leq \frac{X^n_{\beta}}{n_{\alpha} + 1} \Pr(X_{\alpha}^{n_{\alpha}+N} \leq X^n_{\beta}) \leq c$$

$$\frac{1}{N} \max_i \Lambda^b \leq \max_i \frac{(1 - X^n_{\alpha})}{n_i + 1} \Pr(X_i^{n_i+N} \geq X^n_{\alpha}) \leq c$$

$\forall i : i \neq \alpha$
Sample Redistribution

- The VOI estimate assumes that the information is **discarded** between states.
- MCTS **re-uses rollouts** generated at earlier search states.
- Either incorporate ‘future’ influence into the VOI estimate (*non-trivial!*).
- Or behave myopically w.r.t. search tree depth:
 1. Estimate VOI as though the information is discarded.
 2. Stop early if the VOI is below a certain threshold.
 3. Save the unused sample budget for search in future states.
- The cost c of a sample is the VOI of increasing a future budget by one sample.
Best results for sample cost $c \approx 10^{-6}$:
winning rate of 64% for 10000 samples per ply.
Playing Go Against UCT:
Winning Rate vs. Number of Samples per Ply

Sample cost c fixed at 10^{-6}:

Best results for *intermediate* N_{samples}:
- When N_{samples} is too low, poor moves are selected.
- When N_{samples} is too high, the VOI of further sampling is low.
Outline

Introduction

Rational Metareasoning

VOI-aware Monte Carlo Tree Sampling

Towards Rational Deployment of Multiple Heuristics in A*

Insights into the Methodology
Apply all heuristics to initial state s_0
Insert s_0 into $OPEN$

while $OPEN$ not empty do
 $n \leftarrow$ best node from $OPEN$
 if $Goal(n)$ then
 return trace(n)

 foreach child c of n do
 Apply h_1 to c
 insert c into $OPEN$
 insert n into $CLOSED$

return FAILURE
Lazy A^*

Apply all heuristics to initial state s_0
Insert s_0 into $OPEN$

while $OPEN$ not empty do
 $n \leftarrow$ best node from $OPEN$
 if Goal(n) then
 return trace(n)
 if h_2 was not applied to n then
 Apply h_2 to n
 re-insert n into $OPEN$
 continue //next node in $OPEN$

 foreach child c of n do
 Apply h_1 to c
 insert c into $OPEN$
 insert n into $CLOSED$

return FAILURE
Rational Lazy A^*

Apply all heuristics to initial state s_0
Insert s_0 into OPEN

while OPEN not empty do
 $n \leftarrow$ best node from OPEN
 if Goal(n) then
 return trace(n)
 if h_2 was not applied to n and h_2 is likely to pay off then
 Apply h_2 to n
 re-insert n into OPEN
 continue //next node in OPEN
 foreach child c of n do
 Apply h_1 to c
 insert c into OPEN
 Insert n into CLOSED
return FAILURE
Rational Decision

▶ When does computing h_2 pay off?
▶ Suppose h_2 was computed for state s. Then either:
 1. s will be expanded later on anyway
 2. an optimal goal is found before s is expanded
▶ Computing h_2 pays off only in outcome 2 — call this “h_2 is helpful”

“It is difficult to make predictions, especially about the future”

— Yogi Berra / Neils Bohr
Towards a Rational Decision

- Myopic assumption: this is the last meta-level decision to be made, and henceforth the algorithm will act like lazy A^*. When a node re-emerges from the open list, compare the regret of computing h_2 as in lazy A^*, vs. just expanding the node.
- Note: if rational lazy A^* is indeed better than lazy A^*, the myopic assumption results in an upper bound on the regret.

<table>
<thead>
<tr>
<th></th>
<th>Compute h_2</th>
<th>Bypass h_2</th>
</tr>
</thead>
<tbody>
<tr>
<td>h_2 helpful</td>
<td>0</td>
<td>$\sim b(s)t_1 + (b(s) - 1)t_2$</td>
</tr>
<tr>
<td>h_2 not helpful</td>
<td>$\sim t_2$</td>
<td>0</td>
</tr>
</tbody>
</table>

$b(s)$ denotes the number of successors of s

Disclaimer: for the exact analysis, see the paper
From Regret to Rational Decision

<table>
<thead>
<tr>
<th></th>
<th>Compute h_2</th>
<th>Bypass h_2</th>
</tr>
</thead>
<tbody>
<tr>
<td>h_2 helpful</td>
<td>0</td>
<td>$\sim b(s)t_1 + (b(s) - 1)t_2$</td>
</tr>
<tr>
<td>h_2 not helpful</td>
<td>$\sim t_2$</td>
<td>0</td>
</tr>
</tbody>
</table>

- Suppose that the probability of h_2 being helpful is p_h
- Then the rational decision is to compute h_2 iff:

$$\frac{t_2}{t_1} < \frac{p_h b(s)}{1 - p_h b(s)}$$
Approximating p_h

\[
\frac{t_2}{t_1} < \frac{p_h b(s)}{1 - p_h b(s)}
\]

- We can directly measure t_1, t_2 and $b(s)$, but need to approximate p_h
- If s is a state at which h_2 was helpful, then we computed h_2 for s, but did not expand s. Denote the number of such states by B.
- Denote by A the number of states for which we computed h_2.
- We can use $\frac{A}{B}$ as an estimate for p_h
Empirical Evaluation: Weighted 15 Puzzle

- h_1 — weighted manhattan distance
- h_2 — lookahead to depth l with h_1

<table>
<thead>
<tr>
<th>l</th>
<th>Generated</th>
<th>Time</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>A^*</td>
<td>LA^*</td>
</tr>
<tr>
<td>2</td>
<td>1,206,535</td>
<td>1,206,535</td>
</tr>
<tr>
<td>4</td>
<td>1,066,851</td>
<td>1,066,851</td>
</tr>
<tr>
<td>6</td>
<td>889,847</td>
<td>889,847</td>
</tr>
<tr>
<td>8</td>
<td>740,464</td>
<td>740,464</td>
</tr>
<tr>
<td>10</td>
<td>611,975</td>
<td>611,975</td>
</tr>
<tr>
<td>12</td>
<td>454,130</td>
<td>454,130</td>
</tr>
</tbody>
</table>
Empirical Evaluation: Planning Domains

- h_{LA} — admissible landmarks
- h_{LM-CUT} — landmark cut

<table>
<thead>
<tr>
<th>Alg</th>
<th>Solved</th>
<th>Time (GM)</th>
<th>Expanded</th>
<th>Generated</th>
</tr>
</thead>
<tbody>
<tr>
<td>h_{LA}</td>
<td>698</td>
<td>1.18</td>
<td>183,320,267</td>
<td>1,184,443,684</td>
</tr>
<tr>
<td>h_{LM-CUT}</td>
<td>697</td>
<td>0.98</td>
<td>23,797,219</td>
<td>114,315,382</td>
</tr>
<tr>
<td>max</td>
<td>722</td>
<td>0.98</td>
<td>22,774,804</td>
<td>108,132,460</td>
</tr>
<tr>
<td>selmax</td>
<td>747</td>
<td>0.89</td>
<td>54,557,689</td>
<td>193,980,693</td>
</tr>
<tr>
<td>LA^*</td>
<td>747</td>
<td>0.79</td>
<td>22,790,804</td>
<td>108,201,244</td>
</tr>
<tr>
<td>RLA^*</td>
<td>750</td>
<td>0.77</td>
<td>25,742,262</td>
<td>110,935,698</td>
</tr>
</tbody>
</table>

- RLA^* solves the most problems, and is fastest on average
Outline

Introduction

Rational Metareasoning

VOI-aware Monte Carlo Tree Sampling

Towards Rational Deployment of Multiple Heuristics in A*

Insights into the Methodology
Rational metareasoning works best when:

1. Ubiquitous heuristic evaluation of the search space decreases the total search time.
2. The heuristic computation time constitutes a significant part of the total search time.

It is important to identify the right metareasoning decision.

Simple utility and information model serve well.

Tunable parameters should reflect algorithm implementation rather than problem set.
Bibliography

Thank You