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Sequential Decision Problems

I The agent selects actions based on outcomes of earlier actions.

I A solution is a contingency plan: a function from the history of
actions and their outcomes to the next action.

I The optimal solution maximizes the expected reward. The reward
is a known function of the history of actions and outcomes.



Sailing Domain



Multi-Armed Bandit



Board Games

I Backgammon

I Checkers

I Chess

I Computer Go



From Tel Aviv to Jerusalem
I the agent plans a journey from Tel Aviv to Jerusalem.
I there are two main routes - 1 and 443.
I the agent has a prior belief about travel time distribution.
I the agent can make a phone call to inquire about each of the

routes.



From Tel Aviv to Jerusalem: Objective Function

1. the agent wants to minimize the time on the road:
u(t) =−t

2. the agent has to arrive by a particular time T:
u(t) = 1 if t ≤ T , −1 otherwise.

3. the agent wants to minimize the time on the road, but has to
arrive by a particular time:

u(t) = 1− t
T if t ≤ T , −1 otherwise.



From Tel Aviv to Jerusalem: prior belief
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From Tel Aviv to Jerusalem: updated 1
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1 updated.



From Tel Aviv to Jerusalem: updated 443
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From Tel Aviv to Jerusalem: updated 1 and 443
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From Tel Aviv to Jerusalem: updated 1 and 443 with cost
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Both 1 and 443 updated, phone call duration 3 minutes.
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Rational Metareasoning

I A problem-solving agent can perform base-level actions from a
known set {Ai}.

I Before committing to an action, the agent may perform a
sequence of meta-level deliberation actions from a set {Sj}.

I At any given time there is a base-level action Aα that maximizes
the agent’s expected utility.

The net VOI V (Sj) of action Sj is the intrinsic VOI Λj less the cost of
Sj :

V (Sj) = Λ(Sj)−C(Sj)

Λ(Sj) = E
(
E(U(Aj

α ))−E(U(Aα ))
)

I Sjmax that maximizes the net VOI is performed:
jmax = argmaxj V (Sj), if V (Sjmax) > 0.

I Otherwise, Aα is performed.



Greedy Algorithm

assign initial beliefs

budget left?

choose measurement
with the greatest VOI

VOI positive?

measure

update beliefs

select an item
with the greatest
utility estimate

no

yes

no

yes



Simplifying assumptions

I Myopicity:
I Meta-greedy: consider only the effect of single computatitonal

actions.
I Single-step: Assume all computations are complete, act as though

a base-level action immediately follows the computation.

I Subtree independence: any computation updates the expected
utility of a single action.
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MCTS

Monte Carlo Tree Search helps in large search spaces. At each node:
I Repeats:

1. Selection: select an action to explore.
2. Simulation: simulates a rollout until a goal is reached.
3. Backpropagation: updates the action value.

I Selects the best action.

Adaptive Generally, MCTS samples ‘good’ moves more frequently,
but sometimes explores new directions.



Multi-armed Bandit Problem

Multi-armed Bandit Problem:

I We are given a set A of K arms, A = {1..K}.
I Each arm can be pulled multiple times.

I The reward X j for the j th arm is drawn from an unknown (but
normally stationary and bounded) distribution with mean µj .

I The total reward must be maximized over the budget of N
samples.

The expected total regret rtotal of a sampling policy π for MAB is the
difference between the expected reward from always pulling the best
arm and the expected total reward of the policy.

rtotal = N max
j∈A

µj −E(
N

∑
i=1

x j
i ) (1)



UCB

UCB is near-optimal for MAB — solves exploration/exploitation
tradeoff.

I pulls an arm that maximizes Upper Confidence Bound:

bi = X i +
√

c log(n)
ni

I the expected total regret is O(logn).



UCT

UCT (Upper Confidence Bounds applied to Trees) is based on UCB.

I Adaptive MCTS.

I Applies the UCB selection scheme at each step of the rollout.

I Demonstrated good performance in Computer Go (MoGo,
CrazyStone, Fuego, Pachi, ...) as well as in other domains.

However, the first step of a rollout is different:

I The purpose of MCTS is to choose an action with the greatest
utility.

I Therefore, the simple regret must be minimized.



Simple Regret

The simple regret of a sampling policy for MAB is the expected
difference between the best expected reward maxj∈A µj and the
expected reward µj of the empirically best arm maxi X i :

Ersimple = max
j∈A

µj −E(max
i

X i) (2)



MCTS Tree: Selection & Estimation

selection

estimation reuse



Upper Bounds on Value of Information

Assuming that:

1. Samples are i.i.d. given the value of the arm.

2. The expectation of a selection in a belief state is equal to the
sample mean.

Upper bounds on intrinsic VOI Λb
i of testing the i th arm N times are

(based on Hoeffding inequality):

Λb
α <

NX
nβ

β

nα + 1
·2exp

(
−1.37(X

nα

α−X
nβ

β
)2nα

)
Λb

i|i 6=α
<

N(1−X
nα

α )

ni + 1
·2exp

(
−1.37(X

nα

α−X
ni
i )2ni

)
Tighter bounds can be obtained (see the paper).



VOI-based Sampling in Bernoulli Selection Problem

25 arms, 10000 trials:
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UCB1 is always worse than VOI-aware policies (VOI, VOI+).



Sampling in Trees

I Hybrid sampling scheme:
1. At the root node: sample based on the VOI estimate.
2. At non-root nodes: sample using UCT.

I Stopping criterion: Assuming sample cost c is known,
stop sampling when intrinsic VOI is less than C = cN:

1
N

Λb
α ≤

X
nβ

β

nα + 1
Pr(X

nα+N
α ≤ X

nα

β )≤ c

1
N

max
i

Λb
i ≤max

i

(1−X
nα

α )

ni + 1
Pr(X

ni+N
i ≥ X

nα

α )≤ c

∀i : i 6= α



Sample Redistribution

I The VOI estimate assumes that the information is discarded
between states.

I MCTS re-uses rollouts generated at earlier search states.

I Either incorporate ‘future’ influence into the VOI estimate
(non-trivial!).

I Or behave myopically w.r.t. search tree depth:
1. Estimate VOI as though the information is discarded.
2. Stop early if the VOI is below a certain threshold.
3. Save the unused sample budget for search in future states.

I The cost c of a sample is
the VOI of increasing a future budget by one sample.



Playing Go Against UCT:
Tuning the Sample Cost
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Best results for sample cost c ≈ 10−6:
winning rate of 64% for 10000 samples per ply.



Playing Go Against UCT:
Winning Rate vs. Number of Samples per Ply

Sample cost c fixed at 10−6:
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Best results for intermediate Nsamples:

I When Nsamples is too low, poor moves are selected.

I When Nsamples is too high, the VOI of further sampling is low.
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Rational Lazy

A∗

Apply all heuristics to initial state s0

Insert s0 into OPEN

while OPEN not empty do
n← best node from OPEN

if Goal(n) then
return trace(n)

if h2 was not applied to n

and h2 is likely to pay off

then
Apply h2 to n
re-insert n into OPEN

continue //next node in OPEN

foreach child c of n do
Apply h1 to c
insert c into OPEN

Insert n into CLOSED
return FAILURE
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Rational Lazy A∗

Apply all heuristics to initial state s0

Insert s0 into OPEN

while OPEN not empty do
n← best node from OPEN

if Goal(n) then
return trace(n)

if h2 was not applied to n and h2 is likely to pay off then
Apply h2 to n
re-insert n into OPEN

continue //next node in OPEN
foreach child c of n do

Apply h1 to c
insert c into OPEN

Insert n into CLOSED
return FAILURE



Rational Decision

I When does computing h2 pay off?
I Suppose h2 was computed for state s. Then either:

1. s will be expanded later on anyway
2. an optimal goal is found before s is expanded

I Computing h2 pays off only in outcome 2 — call this “h2 is helpful”

“It is difficult to make predictions, especially about the future”

— Yogi Berra / Neils Bohr



Towards a Rational Decision

I Myopic assumption: this is the last meta-level decision to be
made, and henceforth the algorithm will act like lazy A∗.

I When a node re-emerges from the open list, compare the regret
of computing h2 as in lazy A∗, vs. just expanding the node.

I Note: if rational lazy A∗ is indeed better than lazy A∗, the myopic
assumption results in an upper bound on the regret.

Compute h2 Bypass h2

h2 helpful 0 ∼ b(s)t1 + (b(s)−1)t2
h2 not helpful ∼ t2 0

b(s) denotes the number of successors of s

Disclaimer: for the exact analysis, see the paper



From Regret to Rational Decision

Compute h2 Bypass h2

h2 helpful 0 ∼ b(s)t1 + (b(s)−1)t2
h2 not helpful ∼ t2 0

I Suppose that the probability of h2 being helpful is ph

I Then the rational decision is to compute h2 iff:

t2
t1
<

phb(s)

1−phb(s)



Approximating ph

t2
t1
<

phb(s)

1−phb(s)

I We can directly measure t1, t2 and b(s), but need to approximate
ph

I If s is a state at which h2 was helpful, then we computed h2 for s,
but did not expand s. Denote the number of such states by B.

I Denote by A the number of states for which we computed h2.

I We can use A
B as an estimate for ph



Empirical Evaluation: Weighted 15 Puzzle

I h1 — weighted manhattan distance

I h2 — lookahead to depth l with h1

Generated Time
l A∗ LA∗ RLA∗ A∗ LA∗ RLA∗

2 1,206,535 1,206,535 1,309,574 0.707 0.820 0.842
4 1,066,851 1,066,851 1,169,020 0.634 0.667 0.650
6 889,847 889,847 944,750 0.588 0.533 0.464
8 740,464 740,464 793,126 0.648 0.527 0.377
10 611,975 611,975 889,220 0.843 0.671 0.371
12 454,130 454,130 807,846 0.927 0.769 0.429



Empirical Evaluation: Planning Domains

I hLA — admissible landmarks

I hLM-CUT — landmark cut

623 Commonly Solved
Alg Solved Time (GM) Expanded Generated
hLA 698 1.18 183,320,267 1,184,443,684
hLM-CUT 697 0.98 23,797,219 114,315,382
max 722 0.98 22,774,804 108,132,460
selmax 747 0.89 54,557,689 193,980,693
LA∗ 747 0.79 22,790,804 108,201,244
RLA∗ 750 0.77 25,742,262 110,935,698

I RLA∗ solves the most problems, and is fastest on average
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Insights into the Methodology

I Rational metareasoning works best when:
1. Ubiquitous heuristic evaluation of the search space decreases the

total search time.
2. The heuristic computation time constitutes a significant part of the

total search time.

I It is important to identify the right metareasoning decision.

I Simple utility and information model serve well.

I Tunable parameters should reflect algorithm implementation
rather than problem set.
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