Selecting Computations in Sequential Decision Problems

David Tolpin

Ben-Gurion University of the Negev Beer Sheva, Israel

March 12, 2014

▲□▶ ▲圖▶ ▲ 国▶ ▲ 国▶ - 国 - のへで

Introduction

Rational Metareasoning

VOI-aware Monte Carlo Tree Sampling

Towards Rational Deployment of Multiple Heuristics in A*

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

Insights into the Methodology

Outline

Introduction

Rational Metareasoning

VOI-aware Monte Carlo Tree Sampling

Towards Rational Deployment of Multiple Heuristics in A*

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

Insights into the Methodology

Sequential Decision Problems

- The agent selects actions based on outcomes of earlier actions.
- A solution is a *contingency plan*: a function from the history of actions and their outcomes to the next action.
- The optimal solution maximizes the *expected reward*. The reward is a known function of the history of actions and outcomes.

▲ロト ▲ □ ト ▲ □ ト ▲ □ ト ● ● の Q ()

Sailing Domain

◆□▶ ◆圖▶ ◆臣▶ ◆臣▶ 臣 のへで

Multi-Armed Bandit

Board Games

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ─ □ ─ のへぐ

- Backgammon
- Checkers
- Chess
- Computer Go

From Tel Aviv to Jerusalem

- the agent plans a journey from Tel Aviv to Jerusalem.
- there are two main routes 1 and 443.
- the agent has a prior belief about travel time distribution.
- the agent can make a phone call to inquire about each of the routes.

3

From Tel Aviv to Jerusalem: Objective Function

1. the agent wants to minimize the time on the road:

$$u(t) = -t$$

2. the agent has to arrive by a particular time T:

$$u(t) = 1$$
 if $t \leq T$, -1 otherwise.

3. the agent wants to minimize the time on the road, but has to arrive by a particular time:

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

$$u(t) = 1 - \frac{t}{T}$$
 if $t \leq T, -1$ otherwise.

From Tel Aviv to Jerusalem: prior belief

Prior belief.

From Tel Aviv to Jerusalem: updated 1

1 updated.

From Tel Aviv to Jerusalem: updated 443

443 updated.

From Tel Aviv to Jerusalem: updated 1 and 443

Both 1 and 443 updated.

From Tel Aviv to Jerusalem: updated 1 and 443 with cost

Both 1 and 443 updated, phone call duration 3 minutes.

Outline

Introduction

Rational Metareasoning

VOI-aware Monte Carlo Tree Sampling

Towards Rational Deployment of Multiple Heuristics in A*

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

Insights into the Methodology

Rational Metareasoning

- A problem-solving agent can perform *base-level* actions from a known set {*A_i*}.
- Before committing to an action, the agent may perform a sequence of *meta-level* deliberation actions from a set {S_i}.
- At any given time there is a base-level action A_α that maximizes the agent's *expected utility.*

The **net VOI** $V(S_j)$ of action S_j is the **intrinsic VOI** Λ_j less the cost of S_j :

$$egin{aligned} & V(S_j) = \Lambda(S_j) - C(S_j) \ & \Lambda(S_j) = \mathbb{E}\left(\mathbb{E}(U(\mathcal{A}^j_lpha)) - \mathbb{E}(U(\mathcal{A}_lpha))
ight) \end{aligned}$$

- ► S_{jmax} that maximizes the net VOI is performed: j_{max} = arg max_j V(S_j), if V(S_{jmax}) > 0.
- Otherwise, A_{α} is performed.

Greedy Algorithm

(ロ)、(型)、(E)、(E)、(E)、(O)へ(C)

Simplifying assumptions

Myopicity:

- Meta-greedy: consider only the effect of single computatitonal actions.
- Single-step: Assume all computations are complete, act as though a base-level action immediately follows the computation.

▲ロト ▲ □ ト ▲ □ ト ▲ □ ト ● ● の Q ()

Subtree independence: any computation updates the expected utility of a single action.

Outline

Introduction

Rational Metareasoning

VOI-aware Monte Carlo Tree Sampling

Towards Rational Deployment of Multiple Heuristics in A*

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

Insights into the Methodology

MCTS

Monte Carlo Tree Search helps in large search spaces. At each node:

- Repeats:
 - 1. Selection: select an action to explore.
 - 2. Simulation: simulates a rollout until a goal is reached.
 - 3. Backpropagation: updates the action value.
- Selects the best action.

Adaptive Generally, MCTS samples 'good' moves more frequently, but sometimes **explores** new directions.

Multi-armed Bandit Problem

Multi-armed Bandit Problem:

- We are given a set A of K arms, $A = \{1..K\}$.
- Each arm can be pulled multiple times.
- The reward X^j for the jth arm is drawn from an unknown (but normally stationary and bounded) distribution with mean μ_j.
- The total reward must be maximized over the budget of N samples.

The **expected total regret** r_{total} of a sampling policy π for MAB is the difference between the expected reward from always pulling the best arm and the expected total reward of the policy.

$$r_{total} = N \max_{j \in \mathcal{A}} \mu_j - \mathbb{E}(\sum_{i=1}^N x_i^j)$$
(1)

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

UCB is near-optimal for MAB — solves *exploration/exploitation* tradeoff.

► pulls an arm that maximizes Upper Confidence Bound: $b_i = \overline{X}_i + \sqrt{\frac{c \log(n)}{n_i}}$

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

• the expected total regret is $O(\log n)$.

UCT

UCT (Upper Confidence Bounds applied to Trees) is based on UCB.

- Adaptive MCTS.
- Applies the UCB selection scheme at each step of the rollout.
- Demonstrated good performance in Computer Go (MoGo, CrazyStone, Fuego, Pachi, ...) as well as in other domains.

However, the first step of a rollout is different:

The purpose of MCTS is to choose an action with the greatest utility.

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

• Therefore, the **simple regret** must be minimized.

The **simple regret** of a sampling policy for MAB is the expected difference between the best expected reward $\max_{j \in A} \mu_j$ and the expected reward μ_i of the empirically best arm $\max_i \overline{X}_i$:

$$\mathbb{E}r_{simple} = \max_{j \in A} \mu_j - \mathbb{E}(\max_i \overline{X}_i)$$
(2)

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

MCTS Tree: Selection & Estimation

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● ○ ○ ○ ○

Upper Bounds on Value of Information

Assuming that:

- 1. Samples are i.i.d. given the value of the arm.
- 2. The expectation of a selection in a belief state is equal to the sample mean.

Upper bounds on intrinsic VOI Λ_i^b of testing the *i*th arm N times are (based on Hoeffding inequality):

$$\begin{split} &\Lambda_{\alpha}^{b} < \frac{N\overline{X}_{\beta}^{n_{\beta}}}{n_{\alpha}+1} \cdot 2\exp\left(-1.37(\overline{X}_{\alpha}^{n_{\alpha}}-\overline{X}_{\beta}^{n_{\beta}})^{2}n_{\alpha}\right) \\ &\Lambda_{i|i\neq\alpha}^{b} < \frac{N(1-\overline{X}_{\alpha}^{n_{\alpha}})}{n_{i}+1} \cdot 2\exp\left(-1.37(\overline{X}_{\alpha}^{n_{\alpha}}-\overline{X}_{i}^{n_{i}})^{2}n_{i}\right) \end{split}$$

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Tighter bounds can be obtained (see the paper).

VOI-based Sampling in Bernoulli Selection Problem

・ロト ・聞ト ・ヨト ・ヨト

3

25 arms, 10000 trials:

UCB1 is always worse than VOI-aware policies (VOI, VOI+).

Sampling in Trees

- Hybrid sampling scheme:
 - 1. At the *root node*: sample based on the VOI estimate.
 - 2. At non-root nodes: sample using UCT.
- Stopping criterion: Assuming sample cost c is known, stop sampling when intrinsic VOI is less than C = cN:

$$\frac{1}{N}\Lambda_{\alpha}^{b} \leq \frac{\overline{X}_{\beta}^{n_{\beta}}}{n_{\alpha}+1} \operatorname{Pr}(\overline{X}_{\alpha}^{n_{\alpha}+N} \leq \overline{X}_{\beta}^{n_{\alpha}}) \leq c$$

$$\frac{1}{N} \max_{i} \Lambda_{i}^{b} \leq \max_{i} \frac{(1-\overline{X}_{\alpha}^{n_{\alpha}})}{n_{i}+1} \operatorname{Pr}(\overline{X}_{i}^{n_{i}+N} \geq \overline{X}_{\alpha}^{n_{\alpha}}) \leq c$$

$$\forall i : i \neq \alpha$$

▲ロト ▲ □ ト ▲ □ ト ▲ □ ト ● ● の Q ()

Sample Redistribution

- The VOI estimate assumes that the information is discarded between states.
- MCTS re-uses rollouts generated at earlier search states.
- Either incorporate 'future' influence into the VOI estimate (non-trivial!).
- Or behave myopically w.r.t. search tree depth:
 - 1. Estimate VOI as though the information is discarded.
 - 2. Stop early if the VOI is below a certain threshold.
 - 3. Save the unused sample budget for search in future states.
- The cost c of a sample is

the VOI of increasing a future budget by one sample.

Playing Go Against UCT: Tuning the Sample Cost

イロト 不得 とうほう 不良 とう

3

Best results for sample cost $c \approx 10^{-6}$: winning rate of **64%** for 10000 samples per ply.

Playing Go Against UCT: Winning Rate vs. Number of Samples per Ply

Sample cost *c* fixed at 10^{-6} :

Best results for *intermediate* N_{samples}:

- When N_{samples} is too low, poor moves are selected.
- When N_{samples} is too high, the VOI of further sampling is low.

<ロト < 同ト < 回ト < 回ト = 三日 = 三日

Outline

Introduction

Rational Metareasoning

VOI-aware Monte Carlo Tree Sampling

Towards Rational Deployment of Multiple Heuristics in A*

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

Insights into the Methodology

A*

Apply all heuristics to initial state s_0 Insert so into OPEN while OPEN not empty do $n \leftarrow \text{best node from OPEN}$ if Goal(n) then return trace(n) foreach child c of n do Apply h_1 to c insert c into OPEN Insert n into CLOSED return FAILURE

▲ロト ▲ □ ト ▲ □ ト ▲ □ ト ● ● の Q ()

Lazy A^*

Apply all heuristics to initial state s_0 Insert so into OPEN while OPEN not empty do $n \leftarrow \text{best node from OPEN}$ if Goal(n) then return trace(n) if h₂ was not applied to n Apply h_2 to n re-insert n into OPEN continue //next node in OPEN foreach child c of n do Apply h_1 to c insert c into OPEN Insert n into CLOSED return FAILURE

then

▲□▶▲□▶▲□▶▲□▶ □ のQで

Rational Lazy A*

```
Apply all heuristics to initial state s_0
Insert so into OPEN
while OPEN not empty do
    n \leftarrow \text{best node from OPEN}
    if Goal(n) then
        return trace(n)
    if h_2 was not applied to n and h_2 is likely to pay off then
        Apply h_2 to n
        re-insert n into OPEN
        continue //next node in OPEN
    foreach child c of n do
        Apply h_1 to c
        insert c into OPEN
    Insert n into CLOSED
return FAILURE
```

◆□▶ ◆帰▶ ◆ヨ▶ ◆ヨ▶ = ● ののの

Rational Decision

- When does computing h₂ pay off?
- Suppose *h*₂ was computed for state *s*. Then either:
 - 1. *s* will be expanded later on anyway
 - 2. an optimal goal is found before *s* is expanded
- Computing h₂ pays off only in outcome 2 call this "h₂ is helpful"

"It is difficult to make predictions, especially about the future"

— Yogi Berra / Neils Bohr

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Towards a Rational Decision

- Myopic assumption: this is the *last* meta-level decision to be made, and henceforth the algorithm will act like lazy A*.
- ▶ When a node re-emerges from the open list, compare the regret of computing *h*₂ as in lazy *A*^{*}, vs. just expanding the node.
- Note: if rational lazy A* is indeed better than lazy A*, the myopic assumption results in an upper bound on the regret.

	Compute h ₂	Bypass h ₂
h ₂ helpful	0	$\sim b(s)t_1+(b(s)-1)t_2$
h ₂ not helpful	$\sim t_2$	0

b(s) denotes the number of successors of s

Disclaimer: for the exact analysis, see the paper

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

From Regret to Rational Decision

	Compute h ₂	Bypass h ₂
h ₂ helpful	0	$\sim b(s)t_1+(b(s)-1)t_2$
h ₂ not helpful	$\sim t_2$	0

- Suppose that the probability of h₂ being helpful is p_h
- Then the rational decision is to compute h₂ iff:

$$\frac{t_2}{t_1} < \frac{p_h b(s)}{1 - p_h b(s)}$$

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

Approximating *p*_h

$$\frac{t_2}{t_1} < \frac{p_h b(s)}{1 - p_h b(s)}$$

- We can directly measure t₁, t₂ and b(s), but need to approximate p_h
- If s is a state at which h₂ was helpful, then we computed h₂ for s, but did not expand s. Denote the number of such states by B.

- Denote by A the number of states for which we computed h₂.
- We can use $\frac{A}{B}$ as an estimate for p_h

Empirical Evaluation: Weighted 15 Puzzle

- *h*₁ weighted manhattan distance
- h_2 lookahead to depth *I* with h_1

	Generated			Time		
1	A*	LA*	RLA*	A*	LA*	RLA*
2	1,206,535	1,206,535	1,309,574	0.707	0.820	0.842
4	1,066,851	1,066,851	1,169,020	0.634	0.667	0.650
6	889,847	889,847	944,750	0.588	0.533	0.464
8	740,464	740,464	793,126	0.648	0.527	0.377
10	611,975	611,975	889,220	0.843	0.671	0.371
12	454,130	454,130	807,846	0.927	0.769	0.429

Empirical Evaluation: Planning Domains

- *h_{LA}* admissible landmarks
- h_{LM-CUT} landmark cut

		623 Commonly Solved			
Alg	Solved	Time (GM)	Expanded	Generated	
h _{LA}	698	1.18	183,320,267	1,184,443,684	
h _{LM-CUT}	697	0.98	23,797,219	114,315,382	
max	722	0.98	22,774,804	108,132,460	
selmax	747	0.89	54,557,689	193,980,693	
LA*	747	0.79	22,790,804	108,201,244	
RLA*	750	0.77	25,742,262	110,935,698	

RLA* solves the most problems, and is fastest on average

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ─ □ ─ のへぐ

Outline

Introduction

Rational Metareasoning

VOI-aware Monte Carlo Tree Sampling

Towards Rational Deployment of Multiple Heuristics in A*

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

Insights into the Methodology

Insights into the Methodology

Rational metareasoning works best when:

- 1. Ubiquitous heuristic evaluation of the search space *decreases* the total search time.
- 2. The heuristic computation time constitutes *a significant part* of the total search time.

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- It is important to identify the right metareasoning decision.
- Simple utility and information model serve well.
- Tunable parameters should reflect algorithm implementation rather than problem set.

Bibliography

- Nicholas Hay, Stuart J. Russell, David Tolpin, and Solomon Eyal Shimony. Selecting computations: Theory and applications. In UAI, pages 346–355, 2012.
- 2. Stuart Russell and Eric Wefald. Do the right thing: studies in limited rationality. MIT Press, Cambridge, MA, USA, 1991.
- Eric J. Horvitz. Reasoning about beliefs and actions under computational resource constraints. In Proceedings of the 1987 Workshop on Uncertainty in Artificial Intelligence, pages 429–444, 1987.
- 4. Levente Kocsis and Csaba Szepesvmakeari. Bandit-based Monte-Carlo planning. In ECML, pages 282–293, 2006.
- Peter Auer, Nicolá Cesa-Bianchi, and Paul Fischer. Finite-time analysis of the Multiarmed-bandit problem. Mach. Learn., 47:235–256, May 2002.

Thank You

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ● ●