
CONTRIBUTIONS

• A scheme of rewarding random samples based on program output.

• An approach to propagation of sample rewards to MH proposal scheduling

parameters.

• An application of this approach to LMH, where the probabilities of

selecting each variable for modification are adjusted.

FUTURE WORK

• Extending the adaptation approach to other sampling methods.

• Reward scheme that takes into account the amount of difference between samples.

• Acquisition of dependencies between predicted expressions and random variables.
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PRELIMINARIES

Probabilistic Program
•  A program with random computations.

•  Distributions are conditioned by

`observations'.

•  Values of certain expressions are

`predicted' — the output.

Inference Objectives
•  Suggest most probable explanation (MPE)

- most likely assignment

for all non-evidence variable given evidence.

•  Approximately compute integral of the

form 

•  Continuously and infinitely generate a

sequence of samples. ✓

Lighweight Metropolis-Hastings
(LMH)

 — probabilistic program.

 — random variables.

 — output.

    Run  once, remember .
    loop
      Uniformly select .
      Propose a value for .
      Run , remember .
      Accept ( )
             or reject with MH probability.
      Output .
    end loop
        

Can we do better?
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EXPERIMENTS

Convergence —Gaussian Process

 

1000 samples 

 

10,000 samples 

 

100,000 samples 

Sample size — Kalman Smoother

100 16-dimensional observations, 

500 samples after 10,000 samples of burn-in.
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OUTPUT-SENSITIVE ADAPTIVE METROPOLIS-HASTINGS
FOR PROBABILISTIC PROGRAMS

METROPOLIS HASTINGS WITH ADAPTIVE SCHEDULING

• Selects each  with a different probability.

• Maintains vector of weights  of random choices:

    Initialize  to a constant.

    Run  once.

    for 

      Select  with probability .

      Propose a value for .

      Run , accept or reject with MH probability.

      if accepted
      Compute  based on the program output.
      else
          

      end if
    end for
        

QUANTIFYING THE INFLUENCE

•  Objective: faster convergence of program output .

•  Adaptation parameter: probabilities of selecting random choices for

modification.

•  Optimization target: maximize the change in the program output:

 reflects the anticipated change in  from modifying .

DELAYED CHANGES

Modifying x2 affects the output ...

(let [x1 (sample (normal 1 10))

              x2 (sample (normal x1 1))]

          (observe (normal x2 1) 2)

          (predict x1))

... but only when x1 is also modified.

BACK-PROPAGATING REWARDS

• For each , reward  and count  are kept.

• A history of modified random choices is attached to every .

When modification of  accepted:

    Append  to the history.

    if 
        

        for  in history
            

        end for
        Flush the history.

    else
        

    end if
    

Convergence:
For any partitioning of , Adaptive LMH selects variables from each

partition with non-zero probability.

(let [;; Model

        dist (sample (categorical [[normal 1/2] [gamma 

        a (sample (gamma 1 1))

        b (sample (gamma 1 1))

        d (dist a b)]

    ;; Observations

    (observe d 1) (observe d 2)

    (observe d 4) (observe d 7)

    ;; Explanation

    (predict :d (type d))

    (predict :a a) (predict :b b)))


