
CONTRIBUTIONS

• A scheme of rewarding random samples based on program output.

• An approach to propagation of sample rewards to MH proposal scheduling

parameters.

• An application of this approach to LMH, where the probabilities of

selecting each variable for modification are adjusted.

FUTURE WORK

• Extending the adaptation approach to other sampling methods.

• Reward scheme that takes into account the amount of difference between samples.

• Acquisition of dependencies between predicted expressions and random variables.

David Tolpin, Jan Willem van de Meent,
Brooks Paige, Frank Wood
University of Oxford

Oxford, UK

PRELIMINARIES

Probabilistic Program
•  A program with random computations.

•  Distributions are conditioned by

`observations'.

•  Values of certain expressions are

`predicted' — the output.

Inference Objectives
•  Suggest most probable explanation (MPE)

- most likely assignment

for all non-evidence variable given evidence.

•  Approximately compute integral of the

form

•  Continuously and infinitely generate a

sequence of samples. ✓

Lighweight Metropolis-Hastings
(LMH)

 — probabilistic program.

 — random variables.

 — output.

 Run once, remember .
 loop
 Uniformly select .
 Propose a value for .
 Run , remember .
 Accept ()
 or reject with MH probability.
 Output .
 end loop

Can we do better?

REFERENCES

1. Christophe Andrieu and Johannes Thoms. A

tutorial on adaptive MCMC. Statistics and

Computing, 18(4):343–373, 2008.

2. B. Paige, F. Wood, A. Doucet, and Y.W.

Teh. Asynchronous anytime sequential

Monte Carlo. In NIPS-2014, to appear.

3. David Wingate, Andreas Stuhlmu ̈ller, and

Noah D. Goodman. Lightweight

implementations of probabilistic

programming languages via transformational

compilation. In Proc. of AISTATS-2011.

4. Frank Wood, Jan Willem van de Meent, and

Vikash Mansinghka. A new approach to

probabilistic programming inference. In

AISTATS-2014.

EXPERIMENTS

Convergence —Gaussian Process

1000 samples

10,000 samples

100,000 samples

Sample size — Kalman Smoother

100 16-dimensional observations,

500 samples after 10,000 samples of burn-in.

ACKNOWLEDGMENTS

This material is based on research sponsored by DARPA through
the U.S. Air Force Research Laboratory under Cooperative
Agreement number FA8750-14-2-0004.

OUTPUT-SENSITIVE ADAPTIVE METROPOLIS-HASTINGS
FOR PROBABILISTIC PROGRAMS

METROPOLIS HASTINGS WITH ADAPTIVE SCHEDULING

• Selects each with a different probability.

• Maintains vector of weights of random choices:

 Initialize to a constant.

 Run once.

 for

 Select with probability .

 Propose a value for .

 Run , accept or reject with MH probability.

 if accepted
 Compute based on the program output.
 else

 end if
 end for

QUANTIFYING THE INFLUENCE

•  Objective: faster convergence of program output .

•  Adaptation parameter: probabilities of selecting random choices for

modification.

•  Optimization target: maximize the change in the program output:

 reflects the anticipated change in from modifying .

DELAYED CHANGES

Modifying x2 affects the output ...

(let [x1 (sample (normal 1 10))

 x2 (sample (normal x1 1))]

 (observe (normal x2 1) 2)

 (predict x1))

... but only when x1 is also modified.

BACK-PROPAGATING REWARDS

• For each , reward and count are kept.

• A history of modified random choices is attached to every .

When modification of accepted:

 Append to the history.

 if

 for in history

 end for
 Flush the history.

 else

 end if

Convergence:
For any partitioning of , Adaptive LMH selects variables from each

partition with non-zero probability.

(let [;; Model

 dist (sample (categorical [[normal 1/2] [gamma

 a (sample (gamma 1 1))

 b (sample (gamma 1 1))

 d (dist a b)]

 ;; Observations

 (observe d 1) (observe d 2)

 (observe d 4) (observe d 7)

 ;; Explanation

 (predict :d (type d))

 (predict :a a) (predict :b b)))

