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Abstract

We introduce a new algorithm for multi-agent path finding,
derived from the idea of meta-agent conflict-based search
(MA-CBS). MA-CBS is a recently proposed algorithm for
the multi-agent path finding problem. The algorithm is an ex-
tension of Conflict-Based Search (CBS), which automatically
merges conflicting agents into meta-agents if the number of
conflicts exceeds a certain threshold. However, the decision
to merge agents is made according to an empirically chosen
fixed threshold on the number of conflicts. The best threshold
depends both on the domain and on the number of agents, and
the nature of the dependence is not clearly understood.
We suggest a justification for the use of a fixed threshold
on the number of conflicts based on the analysis of a model
problem. Following the suggested justification, we introduce
a new algorithm, which differs in the ways when and how
meta-agents are created and handled during search. The new
algorithm exhibits considerably better performance compared
to the original algorithm. The new algorithm is evaluated on
several sets of problems, chosen to highlight different aspects
of the algorithm.

Introduction
In the Multi-Agent Path Finding (MAPF) problem, we are
given a graph G(V,E) and a set of N agents a1...aN . Each
agent ai has a start position si ∈ V and a goal position
gi ∈ V . At each time step an agent can either move to a
neighboring location or wait in its current location, at some
cost. The objective is to return a least-cost set of actions
for all agents, which will move all of the agents from start
to goal positions goal without conflicts (i.e., without any
pair of agents being in the same node or crossing the same
edge at the same time). MAPF has practical applications in
robotics, video games, aviation, vehicle routing, and other
domains (Silver 2005; Wang, Botea, and Kilby 2011). In its
general form, MAPF is NP-complete, since it is a general-
ization of the sliding tile puzzle, an NP-complete problem,
but a solution can still be verified in a polynomial number of
steps (Ratner and Warmuth 1986).

In this paper we consider a particular variant of
MAPF, for which Meta-Agent Conflict-Based Search (MA-
CBS) (Sharon et al. 2012b), the algorithm explored here,
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was formulated. The total solution cost is the sum of costs
of all actions (and hence the sum of costs of solutions for
each of the agents). Any single action, as well as waiting
during a single time step in a non-goal position, has unit
cost. Waiting in the goal position has zero cost. The prob-
lem is solved in the centralized computing setting, where a
single program controls all of the agents1.

MA-CBS is a generalization of Conflict-Based Search
(CBS) (Sharon et al. 2012a). MA-CBS presents a compro-
mise between CBS and completely coupled solvers, such as
A*, A*+OD (Standley 2010), or EPEA* (Felner et al. 2012).
The first step of MA-CBS is identical to that of CBS, with
low-level search performed by a single-agent search algo-
rithm. At every following search step MA-CBS employs a
heuristic: if the number of conflicts for a pair of agents ex-
ceeds a certain threshold B, MA-CBS merges the two agents
into a combined agent. Experimental results showed that for
certain values of the threshold MA-CBS outperforms both
CBS and single-agent search. However, threshold B used
in the heuristic has to be empirically determined, and varies
both with the size and shape of graph G and with the num-
ber of agents N . Difficulty choosing the ‘right’ value for B
limits practical usability of MA-CBS.

Generally, a heuristic represents abstraction or approx-
imation of a phenomenon associated with the problem or
algorithm. Understanding why a particular heuristic works
helps make better decisions involving the heuristic. One way
to discover powerful heuristics for a particular problem is
to design them systematically (Prieditis 1993; Hernávölgyi
and Holte 2004). However, a heuristic can also come as an
insight, and in this case explaining why the heuristic is suc-
cessful helps further improve the algorithm.

In this paper we look at the heuristic decision-making of
MA-CBS, in which a fixed threshold on the number of con-
flicts between a pair of agents is used to replace the agents
with a single combined agent. Based on the observations of
the dependence of the threshold on features of the problem,
we suggest an explanation for the threshold, and propose a
model problem where the decision can be made optimal in
a certain sense of optimality. Based on the model problem,

1This setting is tantamount to decentralized cooperative setting
with full knowledge sharing and free communication (Sharon et al.
2012b).



we empirically investigate variants of MA-CBS. The inves-
tigation
• provides further support for the hypothesis regarding the

root cause behind the fixed threshold, and
• allows improving MA-CBS algorithm through better use

of the heuristic.
Consequently, we introduce a new algorithm, Merge-and-
Restart Conflict-Based Search (MR-CBS), which differs in
the way meta-agents are handled during the search. We em-
pirically compare the new algorithm on different problem
domains to illustrate a steady increase of performance.

Background and Related Work
The pseudocode for MA-CBS is shown in Algorithm 1. Like
CBS, MA-CBS maintains a list of nodes, sorted by the in-
creasing sum of costs of individual solutions (SIC). At every
step of the main loop (lines 3–15) a node with the lowest SIC
is removed from the node list (line 6). If the solutions in the
node do not have any conflicts, this set of solutions is re-
turned as the solution for the problem (line 15). In case of
conflicts there are two possibilities. MA-CBS either adds,
just like CBS, two nodes to the node list. The nodes are cre-
ated according to a single conflict between a pair of agents.
Each of the nodes has the solution for one of the agents up-
dated to avoid the conflict with the other agent (lines 12–14).
Otherwise, MA-CBS merges the two agents into a combined
agent and adds a single node to the node list with the com-
bined agent instead of the pair of agents (lines 9–10). The
decision whether to split or to merge is based on parameter
B: the agents are merged if the number of encountered con-
flicts between the agents since the beginning of the search is
at least B.

Algorithm 1 MA-CBS
1: procedure MA-CBS(Agents, B)
2: Nodelist← [NODE(Agents)]
3: loop
4: if EMPTY?(Nodelist) then return FAILURE
5: else
6: Node← POP(Nodelist)
7: if CONFLICTS?(Node) then
8: if MERGE?(Node,B) then
9: Node′ ← MERGE(Node)

10: INSERT(Node′, Nodelist)
11: else
12: Node′, Node′′← SPLIT(Node)
13: INSERT(Node′, Nodelist)
14: INSERT(Node′′, Nodelist)
15: else return SOLUTIONS(Node)

Both CBS and MA-CBS solve MAPF optimally, however
sub-optimal variants of CBS were also introduced (Barrer et
al. 2014). On the other hand, different algorithms for solving
MAPF optimally are also pursued. Some of the other algo-
rithms bear similarities to MA-CBS, such as Independence
Detection (ID) (Standley 2010), which for every pair of con-
flicting agents tries to find an alternative solution for each

A

a

B

b

A

a

B

b

a b

Figure 1: Scenes with 2 agents.

agent avoiding the conflicts, and if failed merges the con-
flicting agents into a combined agent. A suboptimal variant
of ID offers a trade-off between running time and solution
quality (Standley and Korf 2011). Other algorithms, such
as A*+OD (Standley 2010), EPEA*(Felner et al. 2012), or
ICTS (Sharon et al. 2013) can be used for lower-level search
in MA-CBS.

Justification of Fixed Threshold
The authors of MA-CBS summarized the results of their em-
pirical evaluation of the algorithm with an evidence that:

• The best value of threshold B decreases with hardness of
the problem instances.

• The advantage of MA-CBS is more prominent on harder
instances.

Such behavior is characteristic for online competitive algo-
rithms (Manasse, McGeoch, and Sleator 1988), and in par-
ticular reminds of the ski rental problem. In the ski rental
problem a tourist at a ski resort may either pay a fixed rent
for each day of ski rental, or to buy the ski, obviously at a
higher price. The famous result for this problem is that the

tourist should rent the ski for ski price
daily rent −1 days, and to buy

the ski on the next day if he/she is still at the resort.
Consequently, we conjectured that the fixed threshold in

MA-CBS plays a role similar to the threshold in the online
algorithm for the ski rental problem. Both theoretical analy-
sis and empirical evaluation confirmed this conjecture.

Model Problem: 2 agents
Consider the MAPF problem for 2 agents as the simplest
non-trivial case. If MA-CBS is used, and the number of con-
flicts reaches B, some number of merges between 1 and the
number of nodes currently in the node list solves the problem
instance. If the time to find a solution for the combined agent
does not become much shorter when constraints are added,
it may be better to just remove all constraints and compute
the solution for the combined agent once, rather than mul-
tiple times for each node in the node list. We shall call a
version of MA-CBS that restarts the search upon a merge
MR-CBS. A comparative evaluation of MA-CBS and MR-
CBS is provided in Table 1. The problem instance is shown
in Figure 1.a. The number of merges performed by MA-
CBS is, for all but extreme, (1 and 8) values of B is greater
than 1 (the number of restarts in MR-CBS), and the number



of single-agent nodes expanded by MA-CBS is greater than
by MR-CBS.2

nodes
B merges MA-CBS MR-CBS
1 1 66 66
2 2 136 80
3 3 207 95
4 4 278 110
5 3 238 126
6 2 198 142
7 1 158 158

8+ 0 118 118

Table 1: MR-CBS vs MA-CBS for scene 1.a.

The intuition behind MR-CBS is formalized by the fol-
lowing two lemmas about competitiveness of both MR-CBS
and MA-CBS for 2 agents:

Lemma 1. Let us denote by T2 the time to find the shortest
path for the combined agent, and by T1,1 the time to find
the shortest paths for both agents independently, ignoring
conflicts between the agents. Under the assumptions that

a) T1,1 and T2 are constant for a given problem instance at
any point of the algorithm,

b) T2 ≥ T1,1, and
c) the ratio T2

T1,1
is known in advance,

MR-CBS is 2 − 1
B -competitive, and the competitive ratio is

achieved for B = b T2

T1,1
c.

Proof. Since merging two agents solves a 2-agent problem
at the cost T2, and splitting on a conflict may or may not
solve the problem at the cost T1,1, this problem is equivalent
to the ski rental or two caches and one block snoopy caching
problem (Karlin et al. 1988).

Lemma 2. Under the assumptions of Lemma 1 MA-CBS is
1+B− 1

B -competitive, and the competitive ratio is achieved
for B = b T2

T1,1
c.

Proof. After k splits there are k + 1 nodes in the node list
(Algorithm 1) for any k ≥ 0. Hence, MA-CBS performs at
most B−1 splits and then at most B merges, and the worst-
case time is TMA−CBS = BT2 + (B − 1)T1,1. Just like in
the proof for the ski rental problem, the competitive ratio is

min
B

min

(
TMA−CBS

T2
,
TMA−CBS

BT1,1

)
= 1 +B − 1

B
(1)

for B = b T2

T1,1
c.

2Let us note that the number of expanded single-agent nodes
is, along with the search time, an adequate measure of the perfor-
mance of CBS, MA-CBS, and variants. Evaluation of the distance
heuristic for a single agent can be memoized, and the total heuristic
evaluation time is thus negligible compared to the time spent ex-
panding single-agent nodes and generating children satisfying the
constraints.

According to the assumptions of Lemma 1, T2

T1,1
is at least

1, hence MR-CBS is competitive with a lower ratio (that is,
in the worst case finds a solution in a shorter time) than MA-
CBS.

The worst-case approach is apparently a reasonable op-
tion for designing an algorithm for 2-agent MAPF. Both
problem instances in Figure 1 have agents at the same lo-
cations, as well as the same number of passable cells, and
the same position of the bottleneck. Nonetheless, the cost of
an optimal solution for the instance in Figure 1.a is 11, and
CBS has to resolve 7 conflicts, but for the instance in Fig-
ure 1.b the cost is 9, and only 1 conflict has to be resolved
before a solution is found. MR-CBS is more efficient for 1.a
but not for 1.b, where CBS is faster.

MR-CBS for Any Number of Agents
MR-CBS can be extended to an arbitrary number of agents.
The pseudocode of MR-CBS is shown in Algorithm 2. MR-
CBS differs from MA-CBS (Algorithm 1) in lines 8–10.
Firstly, MERGE/R creates a node with unconstrained solu-
tions for individual agents. Secondly, the node list is re-
initialized to contain just the new node (line 10). Effectively,
the search is restarted with the two agents replaced by a com-
bined agent.

Algorithm 2 MR-CBS
1: procedure MR-CBS(Agents,B)
2: Nodelist← [NODE(Agents)]
3: loop
4: if EMPTY?(Nodelist) then return FAILURE
5: else
6: Node← POP(Nodelist)
7: if CONFLICTS?(Node) then
8: if RESTART?(Node, B) then
9: Node′ ← MERGE/R(Node)

10: Nodelist← [Node′]
11: else
12: Node′, Node′′← SPLIT(Node)
13: INSERT(Node′, Nodelist)
14: INSERT(Node′′, Nodelist)
15: else return SOLUTIONS(Node)

The decision whether to merge two agents and restart the
search is again based on a fixed threshold. Given the sug-
gested interpretation for B as an estimate of T2

T1,1
, merg-

ing combined, instead of single, agents into a larger yet
agent should require a threshold that depends on the sizes
of the agents to be merged. This was confirmed by prelim-
inary experiments on partial sliding tile puzzle (see below),
which showed that using the same B for merging both sin-
gle and combined agents, as in the original version of MA-
CBS (Sharon et al. 2012b), slows down the search compared
to merging just single agents. Indeed, the number of chil-
dren grows exponentially with the number of single agents
in a combined agent, and thus the search time grows at least
exponentially with the size of the combined agent, demand-
ing a higher B. In the experiments, we limited the maximum



size of a combined agent to 2, that is, only single agents
would be merged, efficiently setting B = ∞ for producing
combined agents consisting of more than 2 single agents. A
more advanced implementation would be based on different
values of B for different sizes of agents to be merged.

Exploring MR-CBS with Partial Sliding Tile Puzzle
We used the partial sliding tile puzzle, in which only some
of the tiles are present on the 4×4 board, for the exploration.
We needed to determine the number of tiles for which prob-
lem instances which are solved faster by either CBS and
MA-CBS(1) or MR-CBS(1) occur sufficiently often. We
randomly generated a set of 100 random scenes for every
number of agents from 2 to 9, spreading the agents in such
a way that conflicts are likely, and found that most instances
form with less than 7 agents are best solved by CBS without
merging, and most problems with 9 agents are best solved
by merging agents on the first conflict. Consequently, we
chosen a set of 8-agent problem instances.

MR-CBS MA-CBS
B time, sec expanded time, sec expanded
1 7,997.4 35,214,246 12,077.5 42,593,750
4 9,170.4 41,795,136 32,443.3 136,769,252

19 7,011.4 30,990,369 43,633.9 170,588,470
63 6,249.0 25,826,426 46,647.9 160,939,149
94 5,480.9 21,999,664 48,409.4 191,118,297

211 6,940.8 28,448,940 48,993.2 199,920,613
317 7,047.4 28,700,663 40,329.0 162,546,522

Table 2: MR-CBS vs. MA-CBS on 4 × 4 tile puzzle, 8
agents.

The relative performance of MR-CBS and MA-CBS is
consistent with the results for 2 agents. Table 2 shows the
running time, and the number of expanded nodes for MR-
CBS and MA-CBS. The advantage of MR-CBS over MA-
CBS is more prominent for higher values of B, where MR-
CBS exhibits much lower running times and numbers of ex-
panded nodes. Only by B = 317 the search time and the
number of expanded nodes begin to decrease; this, like in
the case of 2 agents, can be explained by the decrease in the
number of search branches reaching this number of conflicts.

Experiments on Benchmark Maps
Following the empirical evaluation in (Sharon et al. 2012b),
we used the same three maps from the game Dragon Age:
Origins (Sturtevant 2012). As with the puzzle, 100 random
instances were generated, and the reported numbers are the
totals over the 100 instances. Table 3 shows the results of
CBS, MA-CBS, MR-CBS on 16-agent scenes for a range of
values of B.

Again, MR-CBS shows the best performance (bold in the
table). The advantage of MR-CBS over MA-CBS depends
on the map. den520d consists mostly of open spaces, and
MR-CBS is 5 times faster than MA-CBS for the tested val-
ues of B. ost003d is a combination of open spaces and bot-
tlenecks; MR-CBS (for B = 16) is 10% faster than MA-

den520d ost003d brc202d
CBS 68,321 9,800 174,727
MR-CBS(1) 3,364 7,429 97,442
MA-CBS(1) 2,935 7,351 98,455
MR-CBS(16) 707 6,837 66,286
MA-CBS(16) 3,531 26,561 75,212
MR-CBS(64) 804 8,373 72,417
MA-CBS(64) 6905 30,582 78,430
MR-CBS(256) 1,454 10,296 92,086
MA-CBS(256) 18,704 17,844 99,987

Table 3: Dragon Age: Origins scenes with 16 agents, search
times (sec) for CBS, MR-CBS, MA-CBS.

CBS (for B = 1) for the tested values of B, but for inter-
mediate values of B, 16 and 64, MR-CBS is 4 times faster
than MA-CBS: hence the best value that would be estimated
from test runs of the low-level search on single and com-
bined agents might give a 4-fold increase in performance.
brc202d mostly consists of narrow paths resulting in many
bottlenecks. MR-CBS is ≈ 12% faster than MA-CBS for
the tested values of B. For all maps and for all values of B,
MR-CBS is faster than MA-CBS. Moreover, the search time
of MA-CBS for intermediate values of B is often longer than
for extreme (either low or high) values, an evidence which
further supports the advantage of restarting the search upon
a merge. Delayed or Randomized MR-CBS can be used to
further improve the performance for the best found value of
B.

Summary and Future Work
This paper has several contributions:

• We provided a justification for the use of a fixed thresh-
old for decision-making in MA-CBS; the justification was
based on the worst-case analysis of a two-agent MAPF
problem.

• Using a model problem based on this justification we in-
troduced a new algorithm, MR-CBS, where the search is
restarted after a merge. MR-CBS exhibits shorter search
times and lower numbers of expanded nodes than MA-
CBS on both 4×4 partial sliding tile puzzle and computer
game scenes.

There is room for further improvement of MR-CBS. Firstly,
the decision to merge a pair of agents can be made based
on the history of conflict occurrence and resolution through
splitting, rather than just the number of conflicts. Secondly,
the tie-breaking, such as selection of the conflicting agents
to split on or merge, and of the conflict to resolve in case of
a split, can be improved using heuristic decision rules. We
believe that metareasoning techniques (Russell and Wefald
1991; Russell 2014) can be applied successfully to MAPF
domain in general and MA-CBS variants in particular to de-
sign the heuristics.
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