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Abstract

Search is an important field of Artificial Intelligence. In problem-solving search, a

single agent acts in a neutral environment to reach goals. Many problems, such as

routing and path-finding problems, finite-domain constraint satisfaction, and function

optimization, fit within the problem-solving search abstraction. General search al-

gorithms capable of solving large sets of search problems are well known. Algorithm

performance can be significantly improved by tuning the algorithm to a particular prob-

lem domain; however, such fine-tuned algorithms exhibit good performance only on

small sets of search problems, and the effort invested in the algorithm design cannot

be reused in other problem domains.

Specialized versions of general search algorithms are often created by combination

and selective application of search heuristics. A human expert decides which heuristics

to use with the problem domain, and specifies how the search algorithm should apply

the heuristics to solve a particular problem instance. A search algorithm that rationally

selects and applies heuristics would decrease the need for costly human expertise.

Principles of rational metareasoning can be used to design rational search agents.

Some rational search algorithms were designed and shown to compare to or even

outperform manually tuned algorithms. However, wide adoption of rational metar-

easoning algorithms for problem solving search is hindered both by theoretical diffi-

culties and by lack of problem domain specific case studies. As a result, the ratio-

nal metareasoning theory has seen relatively little application to real search problems.

This research aims at lifting some of the theoretical difficulties in applying the rational

methodology.

In particular, the problem of efficiency estimating the value of information (VOI)

of computational actions is considered. Computing value of information is a crucial

task in meta-reasoning for search. Numerous VOI computations during a single run

are typically required, and it is essential that VOI be computed efficiently. The re-

search proposes an extension to the known greedy algorithm. The extended algorithm

estimates VOI selectively, based on principles of rational metareasoning, flexibly ex-

ploiting the tradeoff between the accuracy of estimating the VOI and the computational

resources used for the estimation. As a case study, VOI estimation in the measurement

selection problem is examined. Empirical evaluation of the proposed extension in this

domain shows that computational resources can indeed be significantly reduced, at

little cost in expected rewards achieved in the overall decision problem.
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The focus of the major part of this research is on rational metareasoning versions of

algorithms for constraint satisfaction, Monte-Carlo tree search, and optimal planning.

For constraint satisfaction problems, this study proposes a model for adaptive de-

ployment of value ordering heuristics in algorithms. The approach presented here

does not attempt to introduce new heuristics; rather, an “off the shelf” heuristic is de-

ployed selectively based on value of information, thereby significantly reducing the

heuristic’s “effective” computational overhead, with an improvement in performance

for problems of different size and hardness. As a case study, the model was applied to

a value-ordering heuristic based on solution count estimates, and a stable improvement

in the overall algorithm performance was achieved compared to always computing the

estimates.

Monte-Carlo tree search lies at the foundation of UCT, a state-of-the-art algo-

rithm for Markov decision processes and adversarial games. Optimizing the sampling

scheme is thus of interest in numerous search applications. Although UCT is already

very efficient, one can do better if the sampling scheme is considered from a metarea-

soning perspective of value of information. Here, a sampling policy based on upper

bounds on the value of information is proposed. In the empricial evaluation, the new

sampling policy outperformed UCT on random problem instances as well as in playing

Computer Go.

Variants of the A* algorithm are often employed to tackle optimal planning in nu-

merous domains. In the presence of multiple admissible heuristics algorithms such

as Lazy A* or Selective MAX are used to combine the heuristics while minimizing

the computational overhead. In this study, an improvement to Lazy A* is proposed

in which the decision on whether to evaluate the more expensive heuristic is made

according to the value of information of the evaluation. The improved algorithm, Ra-

tional Lazy A*, despite being less informed, achieves the best overall performance

in a wide range of planning domains. In addition, Rational Lazy A* is simpler to

implement than its direct competitor, Selective MAX.

As a whole, the research advances the use of rational metareasoning in search algo-

rithms. Applications of rational metareasoning in the case studies serve as examples to

help researchers employ the methodology in solutions for other problems. Advances

in rational computation and estimation of VOI increase performance and applicability

of existing and new search algorithms, and alleviate dependence of algorithm perfor-

mance on manual fine-tuning.
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Chapter 1

Introduction

Search for optimal or near optimal solutions of combinatorial problems is a funda-

mental field of research in classical and applied Artificial Intelligence. Search prob-

lems can be found in navigation [KS06], routing [Bel58], planning [DKM10], game

playing [BLG11, Goo68], and numerous other combinatorial domains [Kor98]. De-

spite the tremendous volume of research on search in various settings [BGK13], it is

well known that for many search problems no algorithm dominates all others in all

cases [WM95]. Similarly, many algorithms have tunable parameters that need opti-

mizing [HBBH+10, TS12b]. The nature of the required solution (e.g., optimal, subop-

timal) also has significant impact on the desired search algorithm. Selecting the best

algorithm and parameters for the task at hand is thus a non-trivial and important is-

sue [AM96, GS01]. Moreover, every problem instance induces a search graph, which

can be extremely non-uniform and have areas with radically different behavior. This

calls for algorithms which change their settings dynamically during the search, so as

to better adapt to the task at hand.

In this research, a two-level framework for search is proposed: the regular search

level and a metareasoning level (MR). The MR level selects the next computational

operator to be used in the current state of the search. The search level applies the

selected operator. This dual process is repeated until the search task is completed,

resulting in more flexible search algorithms that should perform better than existing

inflexible algorithms. Rational metareasoning, a theory presented over two decades

ago by Russell and Wefald [RW91], aims at optimal decision-making w.r.t. which

computational operator should be applied at every point of the search. Rational metar-

easoing aims at optimization of an algorithm as a whole rather than of selected actions.
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It achieves a search algorithm that is (theoretically) optimal in its use of resources, with

self-adaptation capabilities to the task and domain at hand. However, this rational MR

theory is extremely non-trivial to apply in actual search, due to the difficulty in obtain-

ing the requisite quantitative model (utility values and probability distribution), and

intractability of the model [CS03]—often higher than that of the search problem itself!

As a result, this theory has seen relatively little application to real search problems to

date.

This research develops a methodology of applying the rational metareasoning the-

ory to actual search problems. On one hand, some of the theoretical difficulties are

lifted; in particular, the problem of efficiency of estimating the value of information

of computational actions is considered (Chapter 4). On the other hand, a series of

case studies explores rational metareasoning extensions for state-of-the-art search al-

gorithms, and demonstrates how a significant gain in the algorithm performance is

achieved due to the application of rational metareasoning. The case studies investigate

various aspects of the methodology in the context of constraint satisfaction problems

(Chapter 5), as well as of approximation (Chapter 6) and optimal (Chapter 7) search in

optimization problems. In addition to providing a metareasoning-based solution to a

particular problem, the studies outline both ubiquitous aspects of application of ratio-

nal metareasoning (identifying base-level and computational actions, defining the util-

ity and the value of information, etc.) and techniques which exploit features present

only in some problem classes, such as estimating the value of information based on

distribution-independent bounds (Chapter 6).

A straightforward application of rational metareasoning often faces difficulties be-

cause some of the assumptions of the original approach do not hold. For example, esti-

mating the value of information depends on the belief distribution of action outcomes;

however, the appropriate distribution type and parameters are not easy to determine.

Chapter 5 derives the distribution model from the properties of the search algorithm

rather than from the set of problem instances. Another example is the myopic assump-

tion [RW91], which suggests that a computational action can be chosen based on its

anticipated immediate effect. In some search algorithms, the information is obtained

through sampling—recurring actions with probabilistic outcomes—and the value of

information of a single sample is often zero. Chapter 6 addresses such a case in the

context of Monte-Carlo tree search1 and suggests a value of information estimate based

1Originally the intention was to address only problem-solving search, hence the title of the disser-
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on recurring actions of the same kind.

Advanced search algorithms are often parameterized and require tuning to achieve

the best performance. Building an algorithm upon the principles of rational metarea-

soning allows keeping the number of tunable parameters to a minimum—a single pa-

rameter needs to be tuned in Chapters 5 and 7. In addition, as Chapter 5 demonstrates,

parameters of a metareasoning-based algorithm are likely to reflect implementation

details of the algorithm and the heuristics rather than features of a particular set of

problem instances; this is advantageous since the algorithm can be tuned on a small

training set, and readjustments for different sets of problem instances are unnecessary.

Finally, rational metareasoning is commonly applied to approximating search where

decision quality is traded off for computation time. Optimal search algorithms aim at

finding the optimal solution in the shortest possible time, and seemingly little can be

achieved through application of rational metareasoning. Chapter 7 presents metarea-

soning-based improvements to a variant of the A∗ algorithm that result in finding the

optimal solution in a shorter time using the same heuristic functions; the employed

technique is sufficiently general to extend to other optimal search algorithms.

The rest of the dissertation is organized as follows. Chapter 2 provides the nec-

essary background information about the rational metareasoning approach as well as

about search problems and algorithms. Chapter 3 describes the current state of the art

of application of the rational metareasoning approach to search problems and discusses

difficulties arising in design of search algorithms based on this approach. Chapter 4,

based on [TS12b], introduces rational computation of the value of information—an im-

portant issue in design of efficient search algorithms based on rational metareasoning.

Case studies of the rational metareasoning approach in several search problems are pre-

sented and evaluated in Chapters 5–7 (based on [TS11, TS12a, HRTS12, TBS+13]).

Chapter 8 summarizes the experience of applying the rational metareasoning approach

to various search problems, and Chapter 9 concludes this dissertation with a discussion

of achieved results and further research directions.

tation. However significant results achieved for MCTS, widely used in both problem-solving [TS12a]

and adversary [HRTS12] search, make this dissertation applicable to game-tree search as well.
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Chapter 2

Background

2.1 Search

2.1.1 Problem-Solving Search

Problem-solving search is characterized by a single agent acting in a neutral environ-

ment [RN03]. The ultimate goal of the agent is to select a single member from an

implicit set of feasible solutions. The value of an evaluation function, possibly ran-

domized, can be efficiently computed for any member; however, evaluating all of the

members is infeasible because the set is too large, often exponential in the size of the

problem instance, or even infinite.

The two common selection criteria are

Satisfaction: the evaluation function represents a goal test determining whether the

member satisfies constraints imposed by the problem definition. The agent may

choose any member satisfying the constraints.

Optimization: the evaluation function is a utility function returning a numeric value,

and the agent must choose a member that maximizes the utility.

One strives to design an agent that arrives at the final choice in as little time as pos-

sible, or at least within reasonable time bounds. If an agent that solves any instance of

the problem efficiently cannot be designed, for example because no polynomial-time

algorithm is known, the agent that is the fastest in expectation for a certain instance

distribution is preferred. An optimizing agent may approximate the solution by select-

ing a member which is ‘good enough’ while not necessarily the best one, achieving a
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compromise between the running time and the solution quality.

Problem Examples

Sliding tile puzzle: an N×N board with N2−1 sequentially numbered tiles is given.

A tile adjacent to the blank space can slide into the space. The goal is to arrange

the tiles in ascending order in as few moves as possible [RN03]. This can be

either an optimization problem, in which the shortest route from the initial state

to the goal state must be found, or a satisfaction problem, in which either any

route from the initial state to the goal state must be found, or a proof that no such

route exists must be provided.

N-queens puzzle: N chess queens must be placed on an N × N chessboard such

that none of them is able to capture any other using the standard chess queen’s

moves [RN03]. The queens must be placed in such a way that no two queens

attack each other. Thus, a solution requires that no two queens share the same

row, column, or diagonal. The N-queens puzzle is a satisfaction problem; any

placement of queens satisfying the goal test is a valid solution.

Traveling salesman problem: given a set of cities, and known distances between

each pair of cities, a tour that visits each city exactly once and that minimizes the

total distance traveled must be found [RN03]. This is an optimization problem:

a member of the set of all permutations of the cities with the shortest sum of

distances between the consequent cities must be chosen.

Multi-armed bandit: the levers of a K-slot gambling machine must be pulled a given

number of times in such a way that the total reward is maximized [VM05]. When

pulled, each lever provides a reward drawn from a distribution associated with

that specific lever. Initially, the gambler has no knowledge about the levers, but

through repeated trials, can focus on the most rewarding levers. This is an op-

timization problem with trade-off between exploration and exploitation: while

searching for a series of pulls that maximizes the expected reward, the gam-

bler both attempts to pull the apparently most rewarding lever and tries different

levers to discover a better lever.
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Search Algorithms

Search problems are often solved by traversing the set of feasible solutions until a

member satisfying the goal test (for satisfaction problems), or maximizing the evalu-

ation function (for optimization problems) is found. The two common strategies are

complete-state and partial-state traversal. A search algorithm passes between states by

performing search actions starting from some initial state. The algorithm stops when

a state satisfying the goal test is reached.

Commonly, in the complete-state strategy a state is a complete solution, and in the

partial-state strategy a state is a partially built solution, when some of the structure of

the final solution is left undefined. A slightly different view of the same classification

is provided here to facilitate the discussion in the context of rational metareasoning.

In the complete-state strategy, a state corresponds to a single member of the set of

feasible solutions: a placement of all N queens in the N-queens puzzle or a

permutation of cities in the traveling salesman problem. State transitions are

usually based on the structure of the set members: in the N-queens puzzle, states

that differ from the current state in the position of a single queen can be viewed

as neighbors of the state. The initial state can be chosen arbitrarily.

In the partial-state strategy, a state corresponds to a subset of the set of feasible so-

lutions, and the initial state is the complete set. The search proceeds by consider-

ing states-subsets of the current state until a state consisting of a single element

satisfying the goal test is found. The strategy is called ‘partial-state’ because

each state is based on partial structure of the solution shared by all members of

the subset corresponding to the set. For example, a state in a partial-state strategy

for the traveling salesman problem can be the set of all permutations in which

two particular cities are visited one immediately after the other.

Problem-independent, uninformed search algorithms, such as breadth-first search

and iterative deepening search, can be applied to any search problem without modi-

fications. Unfortunately, these algorithms are incredibly inefficient in most cases: a

complete-state algorithm may have to evaluate all of the set members; in a partial-state

algorithm the number of possible states can be larger than exponential in the problem

size.

Problem-specific knowledge can help find solutions more efficiently. Heuristics are

used to encode the knowledge and to direct the search in such a way that the number
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of explored states is significantly decreased [HM90]. The increase in performance

depends on the quality of the heuristic. Good heuristics can sometimes be constructed

by relaxing the problem definition, by precomputing solution costs for subproblems,

or by learning from experience with the problem class.

The exact role of heuristics in a search algorithm varies for different algorithm fam-

ilies, of which best-first search, backtracking search, and local search are most widely

known and used. Besides, online search algorithms, in which computation and action

are interleaved, are important for exploration problems and dynamic environments.

The following description of informed search algorithms is of necessity very skimpy,

and does not and cannot cover all of the state-of-the art algorithms. Only some widely

adopted schemes referenced in the thesis are briefly described.

Best-First Search

Best-first search (Algorithm 1) is used to solve route-finding or touring problems, in

which a shortest path between the initial and the goal state must be found. The sliding

tile puzzle and the traveling salesman problem are examples of such problems.

Best-first search repeatedly expands the best node in the fringe, according to a

given evaluation function, and adds the node’s children to the fringe (line 11). The

algorithm terminates when either the goal is reached (line 7) or the fringe becomes

empty (line 4). To avoid loops, visited nodes are kept in memory (line 10).

Algorithm 1 Best-First Search

1: ClosedNodes← ∅
2: Fringe← {InitialState}
3: loop

4: if EMPTY(Fringe) then return failure

5: end if

6: node←REMOVEBESTNODE(Fringe)

7: if GOALTEST(node) then return node
8: end if

9: if node /∈ ClosedNodes then

10: ClosedNodes← ClosedNodes ∪ {node}
11: Fringe← Fringe ∪ {EXPAND(node)}
12: end if

13: end loop

The most widely used version of best-first search is A* search. A* evaluates nodes

7



by combining g(n), the cost to reach the node, and h(n), the estimated cost to get from

the node to the goal:

f(n) = g(n) + h(n) (2.1)

Thus, f(n) is the estimated cost of the cheapest solution through node n.

Provided that h(n) is admissible and consistent, A* is optimal; even more, A* is

optimally efficient: no other optimal algorithm is guaranteed to expand fewer nodes

than A* [DP85], given only the information provided by h. Variations of A* with

lower space requirements were developed. However, many search problems are NP-

hard, which means that finding an optimal solution may take exponential time; approx-

imation algorithms may be used to find a solution in polynomial time.

RTA* (Real-Time A*) [Kor90] is a suboptimal version of A* with limited looka-

head horizon. RTA* explores the search graph to a given depth, and then moves to

a node with the lowest estimated distance to the goal, updating g(n) for all nodes to

the distances from the current node. RTA* is not optimal unless the goal is within the

lookahead horizon, but the solution quality increases with the lookahead depth. RTA*

is complete in a space with positive edge costs and finite heuristic values, in which

the goal is reachable from any state. Variants of RTA* have been developed [RW91],

[BLS+08] with improved control over the compromise between the computation time

and the solution quality.

Backtracking Search

Backtracking search is used to solve constraint satisfaction problems. A constraint

satisfaction problem (CSP) is defined by a set of variables, X1, X2, ..., Xn, and a

set of constraints, C1, C2, ..., Cm. Each variable Xi has a non-empty domain Di of

possible values. Each constraint Ci involves some subset of the variables and specifies

the allowable combinations of values for that subset. A state of the problem is defined

by an assignment of values to some or all of the variables; and an assignment that does

not violate any constraints is called a consistent assignment. The eight queens puzzle

can be formulated as a constraint satisfaction problem and solved using backtracking

search.

Backtracking search is a depth-first search algorithm that chooses values for one

variable at a time and backtracks when a variable has no legal values left to assign. A

version of backtracking search is presented in Algorithm 2. The algorithm calls func-

tion BACKTRACKING(assignment, csp) recursively, (line 8) trying values consistent
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Algorithm 2 Backtracking Search

1: procedure BACKTRACKING(assignment, csp)

2: if COMPLETE(assignment) then return assignment
3: end if

4: var ←SELECTUNASSIGNEDVARIABLE(assignment, csp)

5: for all value in ORDERVALUES(var, assignment, csp) do

6: assignment′ ← assignment ∪ {var = value}
7: csp′ ←PROPAGATECONSTRAINTS(csp, var = value)

8: if BACKTRACKING(assignment′, csp′) 6= failure then

9: return assignment′

10: end if

11: end for

12: return failure

13: end procedure

with previous assignments (line 5) for each variable (line 4) until either a solution is

found (line 9) or all combinations are exhausted (line 12). With each new assignment,

the problem is updated according to constraints imposed by the assignment in order to

prune the search space (line 7).

The algorithm performance depends heavily on the efficiency of variable-ordering

and value-ordering heuristics (SELECTUNASSIGNEDVARIABLE in line 4 and ORDER-

VALUES in line 5), as well on the amount of pruning due to the propagation of con-

straints (PROPAGATECONSTRAINTS in line 7). Some variants of the backtracking

search also involve intelligent backtracking, when additional values for recently as-

signed variables are not considered after a failure if it can be proved that that they

would not fix the inconsistency.

Local Search

Local search is a family of complete-state algorithms. The search operates using a

single current state and recursively explores neighbor states until a maximum of the

evaluation function is found. Local search can be used to solve both satisfaction and

optimization problems. To solve satisfaction problems, a heuristic function estimating

the proximity of a state to the goal is used instead of the evaluation function. The N-

queens puzzle and the Traveling salesman problem are examples of problems that can

be solved using local search.
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Online Search

When the search space is dynamic or only partially known, an agent that builds a

complete solution before committing to an action is often infeasible, because a contin-

gency plan becomes prohibitively large. Consequently, online search algorithms come

into use. In an online search algorithm, the agent interleaves computation and action,

accounting for action outcomes in further computations.

Online versions of best-first search explore the search space up to a limited horizon

or through sampling, use the current state of the search to choose an action, perform

the action, and continue the search from the new state. Real-time A* is formulated

as an offline best-first search algorithm [Kor90], but can be used unchanged by online

search agents.

The simplest form of local search, hill climbing, can also be viewed as an online

search algorithm. Other variants of local search involve ‘jumps’ in the search space that

are free offline but come at a cost online. Consequently, random restarts or simulated

annealing are impractical, and a random walk is used instead to escape local maxima.

A random walk simply selects at random one of available actions, giving preference to

actions that have not yet been tried.

Learning plays an important role in online search. The agent can keep information

about visited states and outcomes of the performed actions, and use the gained expe-

rience to compute heuristics. An example of learning in online search is the LRTA*

algorithm [Kor90], an extension of RTA*. LRTA* continuously updates cost estimates

of visited states and uses the current cost estimates to choose the “apparently best”,

though not always locally optimal, move.

2.1.2 Adversarial Search

Adversarial search problems, often known as games, arise in environments with mul-

tiple agents with conflicting goals [RN03]. A specialized but still rich kind of games,

addressed in this search description, are zero-sum games of perfect information — de-

terministic, fully observable environments with two agents whose actions must alter-

nate and in which the utility values at the end of the game are always equal and oppo-

site. For example, if one player wins a game of chess (+1), the other player necessarily

loses (-1). More general kinds of games—multiplayer, non-zero-sum, stochastic—are

out of the scope of this research.
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Optimal Decisions in Games

In an alternating game of two players, the first player is customarily called MAX and

the second MIN. A game can be formally defined as a search problem with the follow-

ing components:

• The initial state, which includes the board position and identifies the player to

move.

• A successor function, which returns a list of (move, state) pairs, each indicating

a legal move and the resulting state.

• A terminal test, which determines when the game is over. States where the game

has ended are called terminal states.

• A utility function, which gives a numeric value for the terminal states. For ex-

ample, in chess the outcome is a win, loss, or draw, with numerical values +1,

-1, 0.

The initial state and the legal moves for each side define the game tree for the game.

In a single-agent search problem, the optimal solution would be a sequence of

moves leading to a goal state—a terminal state that is a win. In a game, the MAX

player must find a contingent strategy, which specifies MAX’s move in the initial state,

and then MAX’s moves in the states resulting from every possible response by MIN.

Given a game tree, the optimal strategy can be determined by examining the minimax

value of each node—the utility of being in the corresponding game state, assuming

that both players play optimally from there to the end of the game. Obviously, the

minimax value of a terminal state is just its utility. Given a choice, MAX will prefer

to move to a state of maximum value, whereas MIN prefers a state of minimum value,

hence the names of the players.

The minimax algorithm, Algorithm 3 [RN03], recursively computes the minimax

decision from the current state. The recursion proceeds all the way down to the leaves

of the tree, and then the minimax values are backed up through the tree. The minimax

algorithm performs a complete depth-first exploration of the game tree, and has expo-

nential time complexity in the depth of the tree. Due to the time cost, the algorithm

cannot be directly applied to real games, but serves as the basis for more practical

algorithms.
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Algorithm 3 Minimax Search

1: procedure MINIMAX-DECISION(state)

2: v ← MAX-VALUE(state)

3: return the action in SUCCESSORS(state) with value v
4: end procedure

5:

6: procedure MAX-VALUE(state)

7: if TERMINAL-TEST(state) then

8: return UTILITY(state)

9: end if

10: v ← −∞
11: for all a, s in SUCCESSORS(state) do

12: v ← max(v, MIN-VALUE(s))

13: end for

14: return v
15: end procedure

16:

17: procedure MIN-VALUE(state)

18: if TERMINAL-TEST(state) then

19: return UTILITY(state)

20: end if

21: v ←∞
22: for all a, s in SUCCESSORS(state) do

23: v ← min(v, MAX-VALUE(s))

24: end for

25: return v
26: end procedure
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Imperfect Real-Time Decisions

The minimax algorithm has to search the search space all the way to terminal states.

This depth is not practical when moves must be made in a reasonable amount of time.

One possible solution is to alternate the minimax algorithm in two ways: the utility

function is replaced by a heuristic evaluation function EVAL, which gives an estimate

of the position’s utility, and the terminal test is replaced by a cutoff test that decides

when to apply the evaluation function, often based on the search depth. The modified

algorithm is obtained by replacing terminal test (lines 7 and 18 of Algorithm 3) with

the cutoff test and application of the evaluation function (Algorithm 4):

Algorithm 4 Cutting off search

1: if CUTOFF-TEST(state, depth) then

2: return EVAL(state)

3: end if

Another way to make real-time decisions is to still search all the way to terminal

states, but to explore only certain subtrees of the game tree, chosen either deterministi-

cally or randomly. Such selective exploration is called Monte-Carlo sampling. Multi-

ple game playouts are generated from the current node, and the utility of each particular

move is estimated based on the outcomes of the playouts. In this dissertation we will

examine algorithms based on Monte-Carlo sampling (Chapter 6).

2.2 Rational Metareasoning

While ideally programs, or agents, should act rationally [RN03], absolute rationality

is not feasible. The computational power of the agent approaching the problem must

be taken into account. Rational metareasoning [RW91] is an approach to building

bounded optimal agents, agents which find a solution that is optimal given their com-

putational resources [Hor87]. The approach describes a method of choosing meta-level

actions and is based on notions of value of information and time cost.

2.2.1 Meta-level Actions

The rational meta-reasoning framework aims at optimal decision-making w.r.t. which

computational operator should be applied at every point in the search. In rational
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meta-reasoning, one can define a meta-level decision problem over states of the be-

lief space with computational operators as meta-level actions, as a problem of se-

quential decision-making under uncertainty. This meta-level problem can be formal-

ized as a (belief state) meta-level Markov decision process (MDP) defined by a tuple

(Q,M, π,R) as follows:

• Q is the state space. Each state Qi ∈ Q includes all current knowledge about the

search graph. For example, in a single-agent search problem a state is comprised

of the known part of the search graph, including all available heuristic estimates

of nodes of this graph.

For every meta-level state Qi there is a corresponding base-level action Ai ∈ A,

which appears to be the best action given Qi. For example, in a best-first search

algorithm (Section 2.1.1) a base-level action is expansion of a node in the fringe.

• M is the set of state transitions. The transitions—the meta-level actions Mj ∈
M—are all the potential computational operators that are applicable to a state

Qi, such as calculating an heuristic for a given node. The transition probabilities

π are defined by the distributions over new knowledge that may be revealed by

applying each of the potential computational operators. For example, if we have

a known distribution over heuristic values that we expect a heuristic to yield, we

can use the distribution to describe our expectation of the potential (belief) state

of the search after (and if) the heuristic is computed at a search node.

• R is all transition rewards. The rewards R are determined by the costs of the

computational operators, in terms of time, memory, etc., and by the utilities of

the base-level actions corresponding to the meta-level states.

The search algorithm selects at each step, by solving the meta-level MDP, a best base-

level action Aα. The goal of meta-level actions is thus to refine the choice of Aα.

2.2.2 Value of Information

A meta-level action affects the choice of the base-level action Aα by changing the

meta-level state. The value of a meta-level action is measured by the resulting increase

in the utility of Aα. Since neither the outcomes of meta-level actions nor the true utility

of Aα are known in advance, a meta-level action is selected according to its expected

influence on the expected utility of Aα.
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Mj affects the meta-level state and the effect of a possible further meta-level action

sequence T. Thus, the expected utility of Mj is:

E(U(Mj)) =
∑

T

Pr(T)E(U(AMj ·T
α )) (2.2)

where Mj · T denotes the meta-level action Mj followed by possible further meta-

level action sequence T, and A
Mj ·T
α is a base-level action chosen after performing the

sequence of meta-level actions Mj ·T. The value of information of a meta-level action

Mj is the expected difference between the expected utility of Mj and the expected

utility of the current Aα.

V (Mj) = E(E(U(Mj))− E(U(Aα))) (2.3)

While a perfectly rational agent would always choose the most valuable compu-

tation sequence, an agent with only limited rationality makes decisions based on an

approximation of the utility.

2.2.3 Benefit and Time Cost

The general dependence on the overall state complicates the analysis. Under certain

assumptions, it is possible to capture the dependence of utility on time in a separate

notion of time cost C. Then, the utility of an action Ai taken after a meta-level action

Mj is the utility of Ai taken now less the cost of time for performing Mj:

U(A
Mj

i ) = U(Ai)− C(Ai,Mj) (2.4)

It is customary to call the current utility of a future base-level action, without sub-

tracting the time cost of the computational action, its intrinsic utility[RW91]. The

separation into intrinsic utility and time cost allows estimation of the utility of a base-

level action in a time-independent manner, and then refining the net utility estimate

according to the time pressure represented by C.

In many cases, the time cost of an internal action is independent of the subsequently

taken base-level action. When C depends only on Mj , (2.3) can be rewritten with the

cost and the intrinsic value of information of a computation as separate terms.
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V (Mj) = E
(

E(U(AMj
α ))− E(U(Aα))

)

= E
(

E(U(AMj
α ))− E(U(Aα))

)

− C(Mj) (2.5)

= Λ(Mj)− C(Mj) (2.6)

where

Λ(Mj) = E
(

E(U(AMj
α ))− E(U(Aα))

)

(2.7)

denotes the intrinsic value of information; that is, the expected difference between the

intrinsic expected utilities of the new and the old selected base-level action, computed

after the meta-level action was taken.

For any particular outcome of the meta-level action, one of the following cases

takes place:

1. the selected base-level action Aα stays the same; consequently, E(U(A
Mj
α )) −

E(U(Aα)) is zero;

2. a different base-level action A
Mj
α is selected, with higher expected utility than

the expected utility of Aα before the meta-level action was taken;

3. a different A
Mj
α is selected, and its expected utility is the same as or lower than

the expected utility of Aα before the meta-level action was taken.

In the last two cases, the difference is positive—although the expected utility of the

final choice can decrease, the latter choice appears to be better than the earlier one due

to the updated knowledge about all actions. Thus, while the net value of information

can be either positive or negative depending on the cost of the action, the intrinsic

value of information is always non-negative.

2.2.4 Simplifying Assumptions

Theoretically, as suggested by Russell and Wefald, optimally solving the meta-level

decision problem reveals an optimal policy to adopt at every step of the search. How-

ever, the meta-level MDP is actually harder to solve in general than the original search

problem; therefore, it makes no sense in practice to actually define and solve this MDP,

at least not during search. Instead, Russell and Wefald introduced a simplified model
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that is much easier to solve. The model is based on the following simplifying assump-

tions [RW91]:

1. Myopic: all computations involved in estimation of the value of information of

meta-level actions assume that at most a single meta-level action will be per-

formed before a base-level action is chosen.1

2. All computational operators have a known time cost.

3. In addition, the subtree independence assumption can be used to further sim-

plify the model: every meta-level action affects the utility estimate only of a

single base-level action.

Applied to certain search problems, this simplified meta-reasoning approach, even if

not entirely justified, results in improved search performance. However, even appli-

cation of the simplified approach is at least non-trivial in many cases, mostly due to

difficulties in obtaining beliefs, transition probabilities, and utility values, as well as

due to high computational complexity of the meta-reasoning level itself. On the other

hand, none of the simplifying assumptions hold in general, and in many cases their

applicability is limited. For example, with many computational operators the subtree

independence assumption is inappropriate — a computation updates the belief state,

and in the new belief state utility estimates of several base-level actions are updated.

The myopic assumption is appropriate to the cases when the value of information of

a sequence of meta-level actions is approximately submodular [KG07]. When the in-

trinsic value of information is strongly concave in the amount of computation, the net

value of information can be negative for every single action, and the myopic assump-

tion results in premature termination of meta-level computation.

2.3 Semi-Myopic Estimation of Value of Information

The myopic assumption of rational metareasoning (Section 2.2.4) is related to the no-

tion of non-increasing returns: an implicit hypothesis that the intrinsic value of infor-

mation grows slower than the cost. When the hypothesis is correct, the assumptions

should work well; otherwise, the myopic algorithm either gets stuck or chooses meta-

level actions which gain little useful information.

1In the original work [RW91] the myopic assumption is presented as two assumptions: “single-step”

and “meta-greedy”.
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Figure 2.1: Value of information curves

While it is often true that starting at some point in time the returns never grow,

until that point they can alternate between increases and decreases. Figure 2.1 shows

a curve of diminishing returns (the dashed curve), an s-curve (the solid curve), and the

areas with negative and positive values for the s-curved returns for a linear time cost

(the dotted straight line). Investments for the first two units of time do not pay off, and

the maximum return is achieved at approximately 2.8.

Experimental results show [Zil96] that sigmoid-shaped returns are not uncommon

in search problems. In such cases, an approach that can deal with increasing returns

must be used. As the pure myopic scheme is too short-sighted in many cases, some

lookahead is needed, at increased computational cost.

Keeping the complexity manageable while overcoming the limitations of the my-

opic algorithm is the basis for the semi-myopic framework. One might consider finding

an optimal meta-level policy, but the number of possible plans, even for discrete vari-

ables, is super-exponential (and uncountably infinite for continuous variables), which

makes this approach infeasible. In the semi-myopic schemes we essentially assume

(only for the sake of estimating VOI), that we need to select meta-level actions offline.

This makes the (simplified, but incomplete) search space “only” exponential in the

general case, and polynomial in important, useful special cases.

Let M be the set of all possible meta-level actions, and C be a constraint over sets

of actions from M . In the semi-myopic framework, all possible subsets (batches) B of

meta-level actions from M that obey constraint C are considered: for each such subset

B a ‘batch’ value of information estimate is computed under the assumption that all

meta-level actions in B are made, followed by a decision. Then, the batch B∗ with the

best value estimate is chosen, and the meta-level action with the highest VOI in B∗ is

performed. The empty constraint C results in the exhaustive scheme — all possible
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action sets are considered; this scheme has an exponential computation time, while

still not guaranteeing optimality (finding an optimal solution requires examination of

all conditional plans). At the other extreme is the constraint where only singleton sets

are allowed. This extreme is tantamount to the myopic assumption.

In the presence of recurring meta-level actions2, such as noisy measurements, a

useful compromise is the blinkered scheme [TS12c], which considers sets of identical

independent meta-level actions. Although this scheme has a computational overhead

over the myopic one, the factor is only linear in the computation-time budget. The

scheme selects a single meta-level action where some number of the meta-level actions

gains the greatest value of information, and seems to be the simplest approximation

that still works for a wide range of conditions under realistic assumptions.

2.4 Related Work

Domain-specific search algorithms and heuristics are discussed in Chapters 5–7. Work

relevant to each of the problem domains is cited in the corresponding sections.

Principles of rational metareasoning were formulated by Russell and Wefald [RW91],

following Horvitz [Hor87]. In a case study of application of rational metareasoning

to problem-solving search, Russell and Wefald [RW91] described the design of the

DTA* search algorithm, a rational version of RTA* search by Korf [Kor90].

Horvitz and Klein [HK95] applied rational metareasoning to theorem proving. In

particular, the authors showed how decision-theoretic methods can be used to deter-

mine the value of continuing to deliberate versus taking immediate action in time-

critical situations. In a later work, Horvitz et al [HRG+01] described methods of the

decision-theoretic control of hard search and reasoning algorithms, illustrating the ap-

proach with a focus on the task of predicting run time for general and domain-specific

solvers on a hard class of structured constraint satisfaction problems.

Zilberstein [Zil93] employed limited rationality techniques to analyze any-time al-

gorithms. Radovilsky and Shimony [RS08] applied principles of rational metareason-

ing to the design of any-time algorithms for observation subset selection. Principles of

rational metareasoning are used in some multi-armed bandit algorithms [VM05].

Gomes and Selman [GS01] analyzed dynamic algorithm portfolios to hard combi-

natorial search problems and proposed techniques for online algorithm selection and

2Meta-level actions that can be performed multiple times at the same base-level state.
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resource reallocation based on algorithm performance profiles. Domshlak, Karpas and

Markovitch [DKM10] presented a method of reducing the cost of combining heuristics

for optimal planning search by choosing the best heuristic to compute at each search

state.
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Chapter 3

Rational Metareasoning

in Search Algorithms

An appropriate domain heuristic qualitatively improves performance of search algo-

rithms, allowing easily solving problems which were considered hard [AM96]. How-

ever, heuristics are inherently simplifications, and no heuristic is infallible even within

a single problem class. When heuristic portfolios are available, some heuristics can

be identified to work better than others on certain problem instances, and are applied

accordingly [AM96]; heuristics can also be combined [DKM10]. For certain problem

instances, uninformed search may actually be the best option [KDG04].

Second-level heuristics are used to select, combine, or apply heuristics [AM96,

BLS+08]; however, these meta-heuristics are also domain-specific, and thus are dif-

ficult to generalize. Rational metareasoning offers a systematic approach for selec-

tion and application of heuristic computations in informed search. The techniques

developed according to the approach are often applicable to many different problem

domains and algorithm families.

When considering rational metareasoning in the context of a search algorithm, state

transitions correspond to base level actions, and heuristic computations used to select

among state transitions correspond to computational actions. Selection of a base-level

action according to the rational metareasoning approach (Section 2.2) is presented

in Algorithm 5. In the algorithm, the VOI of all computational actions available in

the current state is repeatedly computed (lines 1–11), and if the maximum VOI is

positive, a computational action Mimax
with the maximum VOI is performed (line 7).

Otherwise, a base-level action with the maximum utility is selected (line 16).
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Algorithm 5 Selecting base-level action

1: loop

2: for all computational actions Mi do

3: Compute V OI(Mi)
4: end for

5: imax ← argmax
i

V OI(Mi)

6: if V OI (Mimax
) > 0 then

7: Perform Mi

8: else

9: break

10: end if

11: end loop

12: for all base-level actions Aj do

13: Compute U(Aj)
14: end for

15: jmax ← argmax
j

U(Aj)

16: return Ajmax

3.1 Search Algorithms with a Metareasoning Layer

The metareasoning layer of an informed search algorithm decides

• whether to apply a heuristic computation or commit to an action;

• which of the heuristics or what combination thereof to use;

• if the heuristic computation is parameterized, what parameter values to use.

The metareasoning layer estimates the value of information and the cost of heuris-

tic computations, and makes decisions according to the principles of metareasoning

(Section 2.2). This way, the layer of domain-specific heuristics is placed between the

domain-independent layers of the search algorithm and the metareasoning.

In real-time or online best-first search an important parameter is the lookahead

horizon. Both the intrinsic value of information and the computation cost usually

grow with the lookahead horizon, and there is often a non-trivial optimal value max-

imizing the net value of information. Another important parameter is the subset of

nodes to expand and the order of expansion. The computations are node expansions

with application of heuristic estimates to the leaves; the base-level actions are state

transitions.
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In backtracking search for constraint satisfaction problems the base-level actions

are variable assignments, and the computations are evaluations of heuristics. There are

many different heuristics [Tsa93]:

• for variable ordering (most constrained variable, minimal width, minimal band-

width, maximum cardinality, etc.);

• for value ordering (minimum conflicts, least impact, etc.);

• for constraint propagation (forward checking, lookahead, maintaining arc con-

sistency, etc.).

Some of the heuristics can be quite expensive, and should be used only if the antici-

pated benefit is greater than the computation cost. In addition, new heuristics can be

invented based on the principles of metareasoning (Chapter 5).

Still, in many cases it is not clear what reasoning model of a search algorithm

suits the metareasoning approach best. Classification and analysis of search algorithms

along the lines of the metareasoning approach would advance both theoretical research

and applications of problem-solving search.

3.2 Assigning Utility and Computation Cost

According to the rational metareasoning approach, the agent must be able to estimate

utilities of base-level actions and costs of computational actions (Section 2.2.3). In

some cases, the estimates are obvious, in others, the task of finding appropriate esti-

mates is complicated.

The simplest case for estimating utility is solving an optimization problem us-

ing a complete-state algorithm, such as solving a Max-CSP (a constraint-satisfaction

problem where the quality of a solution is measured by the number of satisfied con-

straints) using local search. The utility estimate of a base-level action—selecting an

element from the set—is the value of the evaluation function on the selected element.

If a complete-state algorithm is used for solving a satisfaction problem, e.g., the min-

conflicts algorithm [RN03], then the evaluation function that estimates ‘closeness’ of

the state to a consistent state serves as the utility estimation function.

In partial-state algorithms, such as best-first or backtracking search, both the so-

lution quality and the pending base-level and computational actions contribute to the
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utility of a base-level action. Solution quality can often be assumed independent of the

search cost. Under this assumption, the utility of an action is the solution quality less

the cost of the search:

Uaction = Qsolution − Csearch (3.1)

In satisfaction problems, when any solution of the problem has the same quality,

Qsolution can be omitted from (3.1) and the action utility is simply the search cost

taken with the negative sign:

Uaction = −Csearch (3.2)

Csearch is composed of the cost of both computational and base-level actions. In

some algorithms, such as backtracking search, the total search effort can be estimated

[Knu74][Ref04]; in others, such as best-first search, the cost of pending computations

is ignored, and the estimated cost of base-level actions only is used [RW91].

The cost of a computational action can be estimated directly in some cases [RW91];

in other cases, the cost is learned during the same or earlier invocations of the search

algorithm, and can depend on the size of the problem instance. In some algorithms

(see Chapter 5 for an example), just the ratio between costs of the base-level actions

and the computational actions, and not their absolute values, determines the algorithm

behavior.

3.3 Representing and Revising Beliefs

Value of information of a computational action depends on the belief distribution of

outcomes of the action (Section 2.2.2). Often, the belief distribution is represented

as an error distribution around the true value of the quantity to compute (e.g., the

path length in best-first search, the value of a state in local search); of course, the true

value itself is also unknown. The error distribution can be chosen heuristically, learned

from earlier invocations of the algorithm on other problem instances from the same

domain, or gradually refined during the search using Bayesian inference, starting with

a prior belief. Other quantities can probabilistically depend on the computed quantity,

in which case their belief distributions are indirectly affected by the computational

action.

There are thus, in the general case, several simultaneous processes of Bayesian
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inference during the search:

• beliefs about quantities computed by the computational actions are updated based

on outcomes of the actions;

• beliefs about other quantities dependent on the computed quantities are revised

according to the dependencies;

• beliefs about error distributions of outcomes of computational actions are re-

vised.

Proper handling of base-level and meta-level beliefs in search algorithms is crucial for

algorithm performance and allows replacing the guessing and ad hoc heuristics with

uniform techniques applicable to a wide range of problems. In the following chap-

ters, systematic application of the approach is explored on various search problems,

resulting in methodological recommendations and insights on efficient realization of

rational metareasoning in search.
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Chapter 4

Rational Computation

of Value of Information

Problems of decision-making under uncertainty frequently contain cases where infor-

mation can be obtained using some costly actions [WP09], called measurement ac-

tions. In order to act rationally in the decision-theoretic sense, measurement plans are

typically optimized based on some form of value of information (VOI). Computing

value of information can also be computationally intensive. Since an exact VOI is

often not needed in order to proceed (e.g. it is sufficient to determine that the VOI

of a certain measurement is much lower than that of another measurement, at a cer-

tain point in time), significant computational resources can be saved by controlling the

resources used for estimating the VOI. This tradeoff is examined via a case study of

measurement selection.

In general, computing the VOI, even under the commonly used simplifying myopic

assumption, involves multidimensional integration of a general function [RW91]. For

some problems, the integral can be computed efficiently [RW89]; but when the utility

function is computationally intensive or when a non-myopic estimate is used, the time

required to compute the VOI can be significant [HHM93] [BG07] and the computation

time cost must be taken into account. This study presents and analyzes an extension

of the known greedy algorithm. The extension decides when to recompute the VOI of

each of the measurements based on the principles of limited rationality (Section 2.2).

Although it may be possible to use this idea in more general settings, here the con-

tent is on-line most informative measurement selection [KG07] [BG07], an approach

which is commonly used to solve problems of optimization under uncertainty [ZRB05]
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[KLG+08]. Since this approach assumes that the computation time required to select

the most informative measurement is negligible compared to the measurement time, it

is important in this setting to ascertain that VOI estimation indeed does not consume

excessive computational resources.

4.1 The Measurement Selection Problem

Let us examine the following optimization problem: given a set of items of unknown

utility (but a distribution of which is known), an item with as high a utility as possible

must be selected. Measurements (possibly noisy) of item features are allowed prior to

a final selection of an item, at known costs. The objective is to optimize the overall

decision process of measurement and selection. Formally, the measurement selection

problem is a 6-tuple (S, Z, P0,M, u, C) where:

• S = {s1, s2, . . . sNs
} is a set of Ns items.

• Z = {z1, z2, . . . , zNf
} is a set of Nf item features; each feature zi has a domain

D(zi) ⊆ R.

• P0 is a joint distribution over the features of the items in S. That is, a joint

distribution over the random variables {z1(s1), z2(s1), . . . , z1(s2), z2(s2), . . .}.

• M = {mk = (c, p)k k ∈ 1..Nm}, is a set of measurement types, with potentially

different intrinsic measurement cost c ∈ R and observation probability distribu-

tion p of the observed feature values, conditional on the true feature values,

for each measurement type. Repeated measurements are assumed independent

given feature values.

• u(z) : RNf → R is a known utility function of an item over feature values.

• C is a measurement budget.

A policy of measurement and selection for a selection problem is a mapping π

(either explicit or implicit) from belief states (distributions over item features, or alter-

nately histories of observations) to actions, which are either measurements or selection

of a final item. A policy applied to the initial distribution P0 results in a (stochastically

generated) sequence of measurements and final selection

Q = {qi = (ki, si) i ∈ 1..Nq}.sα (4.1)
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where ki is the type of measurement qi, si is the item measured by qi, and sα is the

final selected item. The reward R of the sequence Q is the utility of the selected item

sα less the total cost of measurements:

R , u(z(sα))−
Nq
∑

i=1

cki (4.2)

The goal is to find such a policy that obeys the budget constraint and maximizes the

expectation of the reward (4.2) over all possible measurement outcomes, with a distri-

bution based on the initial belief P0 and the information received from measurements

according to the observation distribution model. The objective function is:

max E[R] s.t.:

Nq
∑

i=1

cki ≤ C (4.3)

Problems from different application areas can be viewed as instances of the mea-

surement selection problem. Equation 4.2 assumes that costs and utilities are com-

mensurable. Often, this is indeed the case, e.g. when both the utility and the cost are

computation times. Otherwise, a mapping of the quantities to the same units must be

provided, as illustrated by the following examples:

Water reservoir monitoring: A water reservoir is monitored for con-

tamination sources. Water probes can be taken in a number of predefined

spots, and the goal is to find the location of a contamination source based

on analysis of water quality. The contamination must be identified quickly,

before it distributes too far or affects the consumers. In this problem, the

features are concentrations of possible contaminants, the utility function is

the time to find the contamination source given the predicted location, and

the measurement cost is the time required to perform a probe.

SVM parameter optimization: Classification accuracy of a support vec-

tor machine (SVM) depends on one or more parameters (see Section 4.5.2

for a case study). While there are heuristics for selecting good parameter

values for particular kernel types and data sets, several combinations of

parameters must be tried before a good one can be chosen. A good set-

ting must be found under certain time constraints. Here, the only feature
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is the classification accuracy α, the utility function is the identity function

u(α) = α, and the measurement cost is proportional to the computation

time with a factor reflecting the time pressure, i. e. the importance of

selecting a combination of parameters in a short time.

The above selection problem is intractable, and is therefore commonly solved ap-

proximately using a greedy heuristic algorithm. The greedy algorithm selects a mea-

surement qjmax
with the greatest net VOI Vjmax

. The net VOI (or just ‘VOI’ for short)

is the difference between the intrinsic VOI and the measurement cost.

Vj = Λj − ckj (4.4)

The intrinsic VOI Λj is the expected difference in the true utility of the finally selected

item — sjα after and sα before the measurement:

Λj = Eqj(Ez|qj [u(z(s
j
α))]− Ez|qj [u(z(sα))]) (4.5)

where expectation Eqj is computed according to the belief distribution about outcomes

of the jth measurement, and Ez|qj — according to the belief distribution of the features

given an outcome of the measurement. Exact computation of Λj is intractable, and

various estimates are used, including the myopic estimate [RW91] and semi-myopic

schemes [TS12c].

The pseudocode for the greedy algorithm is presented as Algorithm 6. The algo-

rithm maintains a persistent data structure which holds beliefs about feature values of

the items. The beliefs are initialized to the prior beliefs (line 2), and then updated

according to measurement outcomes (line 17). The main loop (lines 3–21) continues

as long as there are measurements with the positive VOI (line 15) that fit within the

budget (line 8). Otherwise, the loop terminates (line 20), and the algorithm returns

an item with the maximum expected utility (line 22). Variable budget is initialized to

the total budget C, and decreased by the cost of each performed measurement. Thus,

the algorithm is guaranteed to terminate if the costs of all measurements are strictly

positive and bounded away from zero.

At each step, the algorithm recomputes the VOI of every measurement (line 9).

For the myopic scheme, the computation involves evaluation of a multi-dimensional

integral of a general function (Equation 4.5), repeated for each measurement. For

semi-myopic VOI computation [TS12c], lines 7–13 of Algorithm 6 are replaced by
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Algorithm 6 Greedy measurement selection

1: budget← C
2: Initialize beliefs

3: loop

4: for all items si do

5: Compute E(Ui)
6: end for

7: for all measurements qj do

8: if cj ≤ budget then

9: Compute Vj

10: else

11: Vj ← 0
12: end if

13: end for

14: jmax ← argmax
j

Vj

15: if Vjmax
> 0 then

16: Perform measurement qjmax

17: Update beliefs

18: budget← budget− cjmax

19: end if

20: else break

21: end loop

22: α← argmax
j

E(Ui) return sα

Algorithm 7, and the multi-dimensional integral must be evaluated for each measure-

ment batch (line 4 of Algorithm 7). Depending on the particular semi-myopic scheme,

there can be many more batches than measurements; for example, for the blinkered

scheme [TS12c] with measurement cost c the number of batches is O
(

K log
(

C
c

))

.

The assumptions behind the greedy algorithm are justified when the cost of selecting

the next measurement is negligible compared to the measurement cost. However, op-

timization problems with hundreds and thousands of items are common [TS12c]; and

even if the VOI of a single measurement can be computed efficiently [RW89], the cost

of estimating the VOI of all measurements may become comparable, or even outgrow

the cost of performing a measurement.

Recomputing the VOI for every measurement is often unnecessary. When there are

many different measurements, the VOI of most measurements is unlikely to change

abruptly due to an outcome of just one other measurement. With an appropriate un-

certainty model, it can be shown that the VOI of only a few of the measurements must
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Algorithm 7 Semi-myopic VOI computation

1: forall measurements qj do Vj ← 0
2: for all batches bk satisfying constraint C do

3: if cost(bk) ≤ budget then

4: compute V b
k

5: for all measurements qj ∈ bk do

6: if Vj < V b
k then Vj ← V b

k

7: end for

8: end if

9: end for

be recomputed after each measurement, thus decreasing the computation time and en-

suring that the greedy algorithm exhibits a more rational behavior w.r.t. computational

resources. The focus here is to explore an improvement in the algorithm due to selec-

tive VOI recomputation.

4.2 Rational Computation of the Value of Information

For the selective VOI recomputation, the VOI of each measurement is modeled as

known with uncertainty. The belief BEL(Vj) about the VOI of measurement qj is

represented by a belief distribution. In particular, the normal distribution with mean Λj

and variance ς2j is used, although other distributions models could be used as necessary.

BEL(Vj) = N (Vj, ς
2
j ) (4.6)

After a measurement is performed, and the beliefs about the item features are up-

dated (line 17 of Algorithm 6), the belief about Vj becomes less certain. Under the

assumption that the influence of each measurement on the VOI of other measurements

is independent of influence of any other measurement, the uncertainty is expressed by

adding noise to the belief distribution. For the normal belief distribution, the noise is

also modeled by the normal distribution with zero mean and variance τ 2. Since the

sum of two independent normally distributed random variables X = N (µx, σ
2
x) and

Y = N (µy, σ
2
y) is a normally distributed random variable Z = N (µx + µy, σ

2
x + σ2

y),

the variance of the noise distribution τ 2 is added to the variance of the belief distribu-

tion ς2j :

ς2j ← ς2j + τ 2 (4.7)
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Algorithm 8 Rational computation of the VOI

1: for all measurements qj do

2: if cj ≤ budget then

3: Vj ← Λj − cj
4: ςj ←

√

ςj2 + τ 2

5: else

6: Vj ← 0
7: ςj ← 0
8: end if

9: end for

10: loop

11: for all measurements qk do

12: if ck ≤ budget then

13: Compute Wk ⊲ Equation (4.8)

14: else

15: Wk ← 0
16: end if

17: end for

18: kmax ← argmax
k

Wk

19: if Wkmax
≤ 0 then break

20: Compute Vkmax

21: ςkmax
← 0

22: end loop

23: jmax ← argmaxj Vj

24: Compute Vjmax

25: ςjmax
← 0

When Vj of measurement qj is computed, BEL(Vj) becomes exact (ς2j ← 0). At the

beginning of the algorithm, the beliefs about the VOI of measurements are computed

from the initial beliefs about item features.

In the algorithm that recomputes the VOI selectively, the initial beliefs about the

VOI are computed immediately after line 2 in Algorithm 6, and lines 7–14 of Algo-

rithm 6 are replaced by Algorithm 8. While the number of iterations in lines 11–18

of Algorithm 8 is the same as in lines 7–13 of Algorithm 6, Wk is efficiently com-

putable, and the subset of measurements for which the VOI is computed in line 20 of

Algorithm 8 is controlled by the computation cost cV :
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Wk = −cV +
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(
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ςk

)

(4.8)

where

• Φ(x) is the normal cumulative probability function,

• Vα is the highest, and Vβ is the next to highest net VOI estimate,

• Vγ =

{

Vβ if Vk = Vα

Vα if Vk ≤ Vβ

.

4.3 Obtaining Uncertainty Parameters

Uncertainty variance τ 2 depends on the current beliefs about item features. Beliefs are

changed with each measurement, and the dependency of the uncertainty variance on

the beliefs is complicated. The total cost of the performed measurements may serve

as a scalar measure of influence of observations on the beliefs. The variance τ 2 is

established as a function of the total cost of the measurements performed since the

beginning of the run and of the cost of the last measurement:

τ 2k = f

(

k−1
∑

j=1

cij , cik

)

(4.9)

When the cost of any single measurement is significantly smaller than the total budget,

cmax ≪ C, τ 2k can be approximated as the product of ck and of a function independent

of ck:

τ 2k = cikg

(

k−1
∑

j=1

cij

)

g(c) =
δf(c, η)

δc
, 0 ≤ η ≤ cmax (4.10)
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Dependency g(c) can be obtained in one of the following ways:

• assumed fixed, g(c) = G, with constant G determined from earlier runs or de-

rived from an heuristic;

• learned off-line from earlier runs on other problem instances;

• learned on-line from the effects of earlier measurements on the change in the

VOI in the same problem instance.

The first two options depend on availability of training data for the problem class,

and require offline learning of the dependency prior to application of the rational re-

computing algorithm. However, learning g(c) online from earlier VOI recomputations

during the same run proved to be robust and easy to implement by gradually updating

τ 2 after each VOI recomputation.

4.4 Intensity of VOI estimations

Influence of the rational VOI recomputation on the intensity of VOI estimations can

be estimated under the assumption that there are potentially many measurements—the

cost of a single measurement c is negligible compared to the budget C: c≪ C.

When the computation cost cV increases, the VOI for a smaller number of measure-

ments is recomputed at each step, and the number of VOI estimations of the rational

recomputing algorithm decreases. Let η be the intensity of VOI estimations—the ra-

tio between the expected number of VOI estimations Nr of the rational recomputing

algorithm to the number of VOI estimations N of the original algorithm for the same

number of measurements: η = E(Nr)
N

.

According to the assumption, τ changes slowly. Given τ , ς2j of measurement qi

in the measurement sequence Q (Equation 4.1) is proportional to the VOI age a—the

total cost of measurements performed since the last recomputation of the VOI of the

measurement. Assuming that the measurement cost c is the same for all measurements,

the expected VOI age over all measurements and all steps of the algorithm is inverse-

proportional to the intensity of VOI estimations: a = c/η — the lower is the intensity

of VOI recomputations, the greater is the expected age of a recomputation.

VOI variance ς2 (Equation 4.7) is proportional to the VOI age given τ , i.e. inversely-

proportional to η:

ς2 ∝ 1

η
(4.11)
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As follows from substitution of (4.11) into (4.8), the expected intensity of VOI es-

timations of the rational recomputing algorithm decreases with the logarithm of the

computation cost cV :

η ∝ 1− α log cV (4.12)

where α is a constant. Empirical estimations (Section 4.5) confirm this estimate.

4.5 Empirical Evaluation

Experiments in this section compare performance of the algorithm that recomputes the

VOI selectively with the original algorithm in which the VOI of every measurement is

recomputed at every step. Two of the problems evaluated in [TS12c] are considered:

noisy Ackley function maximization and SVM parameter search. For these problems,

the performance of the greedy algorithm was analyzed in [TS12c], and the semimyopic

(blinkered) scheme, while giving better results than the myopic scheme, caused an

increase in the computation time that, while still polynomial in the size of the problem,

can be prohibitive. According to blinkered scheme, the value of information of a

measurement is estimated by considering batches of multiple measurements of a single

item. The source code is available from http://bitbucket.org/dtolpin/

uncertima.

For each of the optimization problems plots of the number of VOI recomputations

and of the reward vs. the computation cost of VOI estimation are presented. Since

here we are concerned with the cost of VOI estimation as well as with the cost of

measurements, the reward accounts for the total time cost of VOI estimation. The

results are averaged for multiple (100) runs of each experiment, such that the standard

deviation of the reward is ≈ 5% of the mean reward. In the plots,

• the solid line corresponds to the rational recomputing algorithm,

• the dashed line corresponds to the original algorithm,

• the dotted line corresponds to the Monte Carlo algorithm that selects measure-

ments randomly and performs the same number of measurements as the rational

recomputing algorithm for the given computation cost cV .

95% confidence intervals are shown. Since, as can be derived from (4.8), the intensity

of VOI estimations η of the rational recomputing algorithm decreases with the loga-
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Figure 4.1: The Ackley function

rithm of the computation cost cV (Equation 4.12), the computation cost axis is scaled

logarithmically.

4.5.1 The Ackley Function

The Ackley function [Ack87] is a popular optimization benchmark. The two-argument

form of the Ackley function (Figure 4.1) is used in the experiment; the function is

defined by the expression (4.13):

A(x, y) = 20 · exp
(

−0.2
√

x2 + y2

2

)

+ exp

(

cos(2πx) + cos(2πy)

2

)

(4.13)

In the optimization problem, the utility function is u(z) = tanh(2z), the measure-

ments are normally distributed around the true values with variance σ2
m = 0.5, and

the measurement cost is 0.01. There are uniform dependencies with σ2
w = 0.5 in both

directions of the coordinate grid with a step of 0.2 along each axis. The results are

presented in Figure 4.2.
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Figure 4.2: Ackley function maximization

4.5.2 SVM Parameter Search

An SVM (Support Vector Machine) classifier based on the radial basis function has

two parameters: C and γ. A combination of C and γ with high expected classifica-

tion accuracy should be chosen, and an efficient algorithm for determining the optimal

values is not known. A trial for a combination of parameters determines estimated ac-

curacy of the classifier through cross-validation. The SVMGUIDE2 [HCL10] dataset is

used for the case study. The utility function is u(z) = tanh(4(z − 0.5)), the logC and

log γ axes are scaled for uniformity to ranges [1..21] and there are uniform dependen-

cies along both axes with σ2
w = 0.4. The measurements are normally distributed with

variance σ2
m = 0.25 around the true values, and the measurement cost is c = 0.01. The

results are presented in Figure 4.3.

4.5.3 Discussion of Results

In all experiments, the reward, including the computation cost, of the rational recom-

puting algorithm is comparable to or higher than the reward of the original algorithm.

When the computation cost is relatively small (left-hand side of the plots), the rewards
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Figure 4.3: SVM parameter search

of the rational recomputing algorithm and of the original algorithms are essentially

the same, despite the fact that much fewer VOI estimations are computed. This sug-

gests that the benefit of estimating the VOI of a measurement is in many cases low,

and rational elective VOI estimation is a viable approach to decreasing computation

costs. When the computation cost of VOI estimation grows, the rewards still remain

comparable, with the reward of the original algorithm only slighter greater for the

SVM parameter search (Figure 4.3): a lower utility of the final choice of the rational

recomputing algorithm is compensated by a lower computation cost.

The advantage of the rational recomputing algorithm becomes obvious when the

cost of estimating the VOI of all measurements is comparable to or exceeds the cost of

performing a measurement (the right-hand side of the plots). The reward of the original

algorithm decreases rapidly, falling below the reward of the Monte-Carlo algorithm.

Rational recomputing algorithm still performs well: the reward degrades gradually

with the increase of the computation cost, and approaches asymptotically from above

to the reward of random sampling (the Monte-Carlo algorithm).

Overall, the rational recomputing algorithm is robust, despite the simplicity of the

model. Both the case of a negligibly low computation cost of VOI estimation, where
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both the original and the rational recomputing algorithm exhibit good performance,

and the case when the cost of recomputation of VOI for all measurements is compa-

rable to the cost of performing a measurement are handled well: the reward is almost

as high as that of the original algorithm in the former case, and is higher than that

of Monte-Carlo algorithm performing the same number of measurements in the latter

case.

4.6 Conclusion and Further Research

This chapter proposes an improvement to a widely used class of VOI-based optimiza-

tion algorithms. The improvement allows to decrease the computation time while only

slightly affecting the reward. The proposed algorithm rationally reuses computations

of VOI estimates and recomputes the estimates only for measurements for which a

change in the VOI is likely to affect the choice of the next measurement.

The proposed scheme of rational VOI computation can be further improved.

• the normal distribution is chosen rather arbitrarily to model uncertainty about

the VOI. Often, the VOI of a computational action decreases when other com-

putational actions are performed [KG07], and a skewed distribution from the

exponential family should be chosen for better results.

• The termination condition of VOI recomputation should be improved such that

the VOI recomputation cost could be accounted for in the final reward.

• The scheme is applied to the greedy algorithm for measurement selection, but

can be extended to other VOI-based algorithms.
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Chapter 5

Rational Deployment of CSP

Heuristics

Large search spaces are common in artificial intelligence, heuristics being of major im-

portance in limiting search efforts. The role of a heuristic, depending on type of search

algorithm, is to decrease the number of nodes expanded (e.g. in A* search), the num-

ber of candidate actions considered (planning), or the number of backtracks in con-

straint satisfaction problem (CSP) solvers. Nevertheless, some sophisticated heuristics

have considerable computational overhead, significantly decreasing their overall ef-

fect [HH00, KDG04], even causing increased total runtime in pathological cases. It

has been recognized that control of this overhead can be essential to improve search

performance; e.g. by selecting which heuristics to evaluate in a manner dependent on

the state of the search [WF92, DKM10].

We propose a rational metareasoning approach to decide when and how to deploy

heuristics, using CSP backtracking search as a case study. The heuristics examined are

various solution count estimate heuristics for value ordering [MSS97, HH00], which

are expensive to compute, but can significantly decrease the number of backtracks.

These heuristics make a good case study, as their overall utility, taking computational

overhead into account, is sometimes detrimental; and yet, by employing these heuris-

tics adaptively, it may still be possible to achieve an overall runtime improvement,

even in these pathological cases. Following the metareasoning approach, the value of

information (VOI) of a heuristic is defined in terms of total search time saved, and the

heuristic is computed when the expected net VOI is positive.

We begin with background and related work on CSP (Section 5.1), followed by a
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re-statement of value ordering in terms of rational metareasoning (Section 2.2), allow-

ing a definition of VOI of a value-ordering heuristic. This scheme is then instantiated

to handle our case-study of backtracking search in CSP (Section 5.3), with parameters

specific to value-ordering heuristics based on solution-count estimates. Empirical re-

sults (Section 5.4) show that the proposed mechanism successfully balances the trade-

off between decreasing backtracking and heuristic computational overhead, resulting

in a significant overall search time reduction. Other aspects of such tradeoffs are also

analyzed empirically. Finally, possible future extensions of the proposed mechanism

are discussed (Section 5.5).

5.1 Background and Related Work

A constraint satisfaction problem (CSP) is defined by a set of variablesX = {X1, X2, ...},
and a set of constraints C = {C1, C2, ...}. Each variable Xi has a non-empty domain

Di of possible values. Each constraint Ci involves some subset of the variables—the

scope of the constraint— and specifies the allowable combinations of values for that

subset. An assignment that does not violate any constraints is called consistent (or a

solution). There are numerous variants of CSP settings and algorithmic paradigms.

This study focuses on binary CSPs1 over discrete-values variables, and backtracking

search algorithms [Tsa93].

A basic method used in numerous CSP search algorithms is that of maintaining arc

consistency (MAC) [SF97]. There are several versions of MAC; all share the common

notion of arc consistency. A variable Xi is arc-consistent with Xj if for every value

a of Xi from the domain Di there is a value b of Xj from the domain Dj satisfying

the constraint between Xi and Xj . MAC maintains arc consistency for all pairs of

variables, and speeds up backtracking search by pruning many inconsistent branches.

CSP backtracking search algorithms typically employ both variable-ordering [Tsa93]

and value-ordering heuristics. The latter type include minimum conflicts [Tsa93],

which orders values by the number of conflicts they cause with unassigned variables,

Geelen’s promise [Gee92] — by the product of domain sizes, and minimum impact

[Ref04], which orders values by relative impact of the value assignment on the prod-

uct of the domain sizes.

Some value-ordering heuristics are based on solution count estimates [DP87, MSS97,

1CSPs where each constraint involves at most two variables.
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HH00, KDG04]: solution counts for each value assignment of the current variable are

estimated, and assignments (branches) with the greatest solution count are searched

first. The heuristics are based on the assumption that the estimates are correlated with

the true number of solutions, and thus a greater solution count estimate means a higher

probability that a solution be found in a branch, as well as a shorter search time to

find the first solution if one exists in that branch. [MSS97] estimate solution counts

by approximating marginal probabilities in a Bayesian network derived from the con-

straint graph; [HH00] propose the probabilistic arc consistency heuristic (pAC) based

on iterative belief propagation for a better accuracy of relative solution count esti-

mates; [KDG04] adapt Iterative Join-Graph Propagation to solution counting, allow-

ing a tradeoff between accuracy and complexity. These methods vary by computation

time and precision, although all are rather computationally heavy.

5.2 Rational Value-Ordering

The role of (dynamic) value ordering is to determine the order of values to assign to

a variable Xk from its domain Dk, at a search state where values have already been

assigned to (X1, ..., Xk−1). We make the standard assumption that the ordering may

depend on the search state, but is not re-computed as a result of backtracking from the

initial value assignments to Xk: a new ordering is considered only after backtracking

up the search tree above Xk.

Value ordering heuristics may provide information on future search efforts, which

can be summarized by 2 parameters:

• Ti—the expected time to find a solution containing assignment Xk = yki or

verify that there are no such solutions;

• pi—the “backtracking probability”, that there will be no solution consistent with

Xk = yki.

These are treated as the algorithm’s subjective probabilities about future search in the

current problem instance, rather than actual distributions over problem instances. As-

suming correct values of these parameters, and independence of backtracks, the ex-
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pected remaining search time in the subtree under Xk for ordering ω is given by:

T s|ω = Tω(1) +

|Dk|
∑

i=2

Tω(i)

i−1
∏

j=1

pω(j) (5.1)

In terms of rational metareasoning, the “current” optimal base-level action is picking

the ω which optimizes T s|ω. Based on a general property of functions on sequences

[MS79], it can be shown that T s|ω is minimal if the values are sorted by increasing

order of Ti

1−pi
.

A candidate heuristic H (with computation time TH) generates an ordering by

providing an updated (hopefully more precise) value of the parameters Ti, pi for value

assignments Xk = yki, which may lead to a new optimal ordering ωH , corresponding

to a new base-level action. The total expected remaining search time in the subtree is

given by:

T = TH + E[T s|ωH ] (5.2)

Since both TH (the “time cost” of H in metareasoning terms) and T s|ωH contribute

to T , even a heuristic that improves the estimates and ordering may not be useful. It

may be better not to deploy H at all, or to update Ti, pi only for some of the assign-

ments. According to the rational metareasoning approach (Section 2.2), the intrinsic

VOI Λi of estimating Ti, pi for the ith assignment is the expected decrease in the ex-

pected search time:

Λi = E
[

T s|ω
− − T s|ω+i

]

(5.3)

where ω− is the optimal ordering based on priors, and ω+i on values after updating

Ti, pi. Computing new estimates (with overhead T c) for values Ti, pi is beneficial just

when the net VOI is positive:

Vi = Λi − T c (5.4)

To simplify estimation of Λi, the expected search time of an ordering is estimated as

though the parameters are computed only for ω−(1), i.e. for the first value in the or-

dering; essentially, this is the metareasoning subtree independence assumption. Other

value assignments are assumed to have the prior (“default”) parameters Tdef , pdef . As-
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suming without loss of generality that ω−(1) = 1:

T s|ω
− = T1 + p1

|Dk|
∑

i=2

Tdefp
i−2
def = T1 + p1Tdef

1− p
(|Dk|−1)
def

1− pdef
(5.5)

and the intrinsic VOI of the ith deliberation action is:

Λi = E

[

G(Ti, pi)
∣

∣

∣

Ti

1− pi
<

T1

1− p1

]

(5.6)

where G(Ti, pi) is the search time gain given the heuristically computed values Ti, pi:

G(Ti, pi) = T1 − Ti + (p1 − pi)Tdef
1− p

(|Dk|−1)
def

1− pdef
(5.7)

In some cases, H provides estimates only for the expected search time Ti. In such

cases, the backtracking probability pi can be bounded by the Markov inequality as the

probability for the given assignment that the time t to find a solution or to verify that no

solution exists is at least the time T all
i to find all solutions: pi = P

(

t ≥ T all
i

)

≤ Ti

Tall
i

.

In the absence of a better estimate, the bound can be used to estimate the backtracking

probability2

pi ≈
Ti

T all
i

(5.8)

Furthermore, note that in harder problems the probability of backtracking from

variable Xk is proportional to p
(|Dk|−1)
def , and it is reasonable to assume that backtrack-

ing probabilities above Xk (trying values for X1, ..., Xk−1) are still significantly greater

than 0. Thus, the “default” backtracking probability pdef is close to 1, and conse-

quently:

T all
i ≈ Tdef ,

1− p
(|Dk|−1)
def

1− pdef
≈ |Dk| − 1 (5.9)

2This estimate was evaluated empirically on random instances (Section 5.4.2), and appeared to be not

too far off the mark: actual probabilities were, quite expectedly, lower, but the order relations between

the probabilities for different value assignments to a given variable were mostly preserved.
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By substituting (5.8), (5.9) into (5.7), estimate (5.10) for G(Ti, pi) is obtained:

G(Ti, pi) ≈ T1 − Ti + (
T1

T all
1

− Ti

T all
i

)Tdef
1− p

(|Dk|−1)
def

1− pdef

≈ T1 − Ti + (
T1

Tdef

− Ti

Tdef

)Tdef
1− p

(|Dk|−1)
def

1− pdef
≈ T1 − Ti + (T1 − Ti)(|Dk| − 1)

≈ (T1 − Ti)|Dk| (5.10)

Finally, since (5.8), (5.9) imply that Ti < T1 ⇔ Ti

1−pi
< T1

1−p1
,

Λi ≈ E

[

(T1 − Ti)|Dk|
∣

∣

∣
Ti < T1

]

(5.11)

In agreement with the intuition, the intrinsic VOI of estimating Ti grows with the

expected difference T1 − Ti and with the domain size |Dk|. A similar dependence of

the VOI on the degree of the current state was also observed in the study of selective

evaluation of heuristics in A∗ (Section 7).

5.3 VOI of Solution Count Estimates

The estimated solution count for an assignment may be used to estimate the expected

time to find a solution for the assignment under the following assumptions3:

1. Solutions are roughly evenly distributed in the search space, that is, the distribu-

tion of time to find a solution can be modeled by a Poisson process.

2. Finding all solutions for an assignment Xk = yki takes roughly the same time for

all assignments to the variable Xk. Prior work [MSS97, KDG04] demonstrates

that ignoring the differences in subproblem sizes is justified.

3. The expected time to find all solutions for an assignment divided by its solution

count estimate is a reasonable estimate for the expected time to find a single

solution.

Based on these assumptions, Ti can be estimated as Tall

|Dk|ni
where T all is the expected

time to find all solutions for all values of Xk, and ni is the solution count estimate for

3We do not claim that this is a valid model of CSP search; rather, we argue that even with such a

crude model one can get significant runtime improvements.
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yki; likewise, T1 = Tall

|Dk|nmax
, where nmax is the currently greatest ni. By substituting

the expressions for Ti, T1 into (5.11), the intrinsic VOI of computing ni is obtained:

Λi = T all

∞
∑

n=nmax

(

1

nmax

− 1

n

)

P (n, ν) (5.12)

where P (n, ν) = e−ν νn

n!
is the probability, according to the Poisson distribution, to

find n solutions for a particular assignment when the mean number of solutions per

assignment is ν = N
|Dk| , and N is the estimated solution count for all values of Xk,

computed at an earlier stage of the algorithm.

Neither T all nor T c, the time to estimate the solution count for an assignment, are

known. However, for relatively low solution counts, when an invocation of the heuris-

tic has high intrinsic VOI, both T all and T c are mostly determined by the time spent

eliminating non-solutions. Therefore, T c can be assumed approximately proportional

to Tall

|Dk| , the average time to find all solutions for a single assignment, with an unknown

factor γ < 1:

T c ≈ γ
T all

|Dk|
(5.13)

Then, T all can be eliminated from both T c and Λ. Following Equation (5.4), the solu-

tion count should be estimated whenever the net VOI is positive:

V (nmax) ∝ |Dk|e−ν

∞
∑

n=nmax

(

1

nmax

− 1

n

)

νn

n!
− γ (5.14)

The infinite series in (5.14) rapidly converges, and an approximation of the sum can

be computed efficiently. As done in Section 5.4, γ can be learned offline from a set of

problem instances of a certain kind for the given implementation of the search algo-

rithm and the solution counting heuristic.

Algorithm 9 implements rational value ordering. The procedure receives problem

instance csp with assigned values for variables X1, ..., Xk−1, variable Xk to be ordered,

and estimate N of the number of solutions of the problem instance (line 1); N is com-

puted at the previous step of the backtracking algorithm as the solution count estimate

for the chosen assignment for Xk−1, or, if k = 1, at the beginning of the search as the

total solution count estimate for the instance. Solution counts ni for some of the as-

signments are estimated (lines 4–10) by selectively invoking the heuristic computation
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ESTIMATESOLUTIONCOUNT (line 8), and then the domain of Xk, ordered by non-

increasing solution count estimates of value assignments, is returned (lines 11–12).

Algorithm 9 Value Ordering via Solution Count Estimation

1: procedure VALUEORDERING-SC(csp,Xk, N )

2: D ← Dk, nmax ← N
|D|

3: for all i in 1..|D| do ni ← nmax

4: while V (nmax) > 0 do ⊲ using Equation (5.14)

5: choose yki ∈ D arbitrarily

6: D ← D \ {yki}
7: csp′ ← csp with Dk = {yki}
8: ni ← ESTIMATESOLUTIONCOUNT(csp′)
9: if ni > nmax then nmax ← ni

10: end while

11: Dord ← sort Dk by non-increasing ni

12: return Dord

13: end procedure

5.4 Empirical Evaluation

Specifying the algorithm parameter γ is the first issue. γ should be a characteristic of

the implementation of the search algorithm, rather than of the problem instance; it is

also desirable that the performance of the algorithm not be too sensitive to fine tuning

of this parameter.

Most of the experiments were conducted on sets of random problem instances gen-

erated according to Model RB [XL00]. The empirical evaluation was performed in two

stages. In the first stage, several benchmarks were solved for a wide range of values

of γ, and an appropriate value for γ was chosen. In the second stage, the search was

run on two sets of problem instances with the chosen γ, as well as with exhaustive de-

ployment, and with the minimum conflicts heuristic, and the search time distributions

were compared for each of the value-ordering heuristics.

The AC-3 version of MAC was used for the experiments, with some modifica-

tions [SF97]. Variables were ordered using the maximum degree variable ordering

heuristic.4 The value-ordering heuristic was based on a version of the solution count

4A dynamic variable ordering heuristic, such as dom/deg, may result in shorter search times in

general, but gave no significant improvement over static variable ordering in our experiments; on the

other hand, static variable ordering simplifies the analysis.
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estimate proposed in [MSS97]. The version used here was optimized for better com-

putation time for overconstrained problem instances through compilation and efficient

handling of aggregate constraints. As a result, Equation (5.13) is a reasonable ap-

proximation for this implementation. The source code is available from http://

github.com/dtolpin/phd-source-code/tree/master/chapter-5.

5.4.1 Benchmarks
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Figure 5.1: Influence of γ in CSP benchmarks

CSP benchmarks from CSP Solver Competition 2005 [BHL05] were used. 14 out

of 26 benchmarks solved by at least one of the solvers submitted for the competition

could be solved with 30 minutes timeout by the solver used for this study with each of

the following value-ordering heuristics:

VSC — VOI-driven solution count estimate for all values of γ: γ = 0 and the expo-

nential range γ ∈ {10−7, 10−6, ..., 1}.
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SC — exhaustive solution count estimate.

MC — minimum-conflicts.

pAC — probabilistic arc consistency [HH00].

Figure 5.1.a shows the mean search time of VOI-driven solution count estimate de-

ployment TV SC normalized by the search time of exhaustive deployment TSC (γ = 0),

for the minimum conflicts heuristic TMC , and for the pAC heuristic TpAC . The shortest

search time on average is achieved by VSC for γ ∈ [10−4, 3 · 10−3] (shaded in the fig-

ure) and is much shorter than for SC (mean
(

TV SC(10−3)
TSC

)

≈ 0.45); the improvement

was actually close to the “ideal” of getting all the information provided by the heuristic

without paying the overhead at all. For all but one of the 14 benchmarks the search

time for VSC with γ = 3 · 10−3 is shorter than for MC. For most values of γ, VSC

gives better results than MC (TV SC

TMC
< 1). pAC always results in the longest search time

due to the computational overhead.

Figure 5.1.b shows the mean number of backtracks of VOI-driven deployment

NV SC normalized by the number of backtracks of exhaustive deployment NSC , the

minimum conflicts heuristic NMC , and for the pAC heuristic NpAC . VSC causes less

backtracking than MC for γ ≤ 3 · 10−3 (NV SC

NMC
< 1). pAC always causes less back-

tracking than other heuristics, but has overwhelming computational overhead.

Figure 5.1.c shows CV SC , the number of estimated solution counts of VOI-driven

deployment, normalized by the number of estimated solution counts of exhaustive de-

ployment CSC . When γ = 10−3 and the best search time is achieved, the solution

counts are estimated only in a relatively small number of search states: the average

number of estimations is ten times smaller than in the exhaustive case (mean
(

CV SC(10−3)
CSC

)

≈
0.099, median

(

CV SC(10−3)
CSC

)

≈ 0.048).

The results show that although the solution counting heuristic may provide sig-

nificant improvement in the search time, further improvement is achieved when the

solution count is estimated only in a small fraction of occasions selected using rational

metareasoning.

5.4.2 Random instances

Based on the results on benchmarks, we chose γ = 10−3, and applied it to two sets

of 100 problem instances. Exhaustive deployment, rational deployment, the minimum
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Figure 5.2: Search time comparison on sets of random instances (using Model RB)

conflicts heuristic, and probabilistic arc consistency were compared.

The first, easier, set was generated with 30 variables, 30 values per domain, 280

constraints, and 220 nogood pairs per constraint (p = 0.24, pcrit = 0.30). Search time

distributions are presented in Figure 5.2.a. The shortest mean search time is achieved

for rational deployment, with exhaustive deployment next ( TSC

TV SC
≈ 1.75), followed

by the minimum conflicts heuristic ( TMC

TV SC
≈ 2.16) and probabilistic arc consistency

(
T pAC

TV SC
≈ 3.42). Additionally, while the search time distributions for solution counting

are sharp (maxTSC

TSC
≈ 1.08, maxTV SC

TV SC
≈ 1.73), the distribution for the minimum con-

flicts heuristic has a long tail with a much longer worst case time (maxTV SC

TV SC
≈ 5.67).

The second, harder, set was generated with 40 variables, 19 values, 410 constraints,

90 nogood pairs per constraint (exactly at the phase transition: p = pcrit = 0.25).

Search time distributions are presented in Figure 5.2.b. As with the first set, the shortest

mean search time is achieved for rational deployment: TSC

TV SC
≈ 1.43, while the relative

mean search time for the minimum conflicts heuristic is much longer: TMC

TV SC
≈ 3.45.

The probabilistic arc consistency heuristic resulted again in the longest search time

due to the overhead of computing relative solution count estimates by loopy belief

propagation: maxTV SC

TV SC
≈ 3.91.

Thus, the value of γ chosen based on a small set of hard instances gives good

results on a set of instances with different parameters and of varying hardness.
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5.4.3 Generalized Sudoku

Randomly generated problem instances have played a key role in the design and study

of heuristics for CSP. However, one might argue that the benefits of our scheme are spe-

cific to model RB. Indeed, real-world problem instances often have much more struc-

ture than random instances generated according to Model RB. Hence, we repeated the

experiments on randomly generated Generalized Sudoku instances [ABF+06], since

this domain is highly structured, and thus a better source of realistic problems with a

controlled measure of hardness.

The search was run on two sets of 100 Generalized Sudoku instances, with 4x3

tiles and 90 holes and with 7x4 tiles and 357 holes, with holes punched using the

doubly balanced method [ABF+06]. The search was repeated on each instance with

the exhaustive solution-counting, VOI-driven solution counting (with the same value

of γ = 10−3 as for the RB model problems), minimum conflicts, and probabilistic

arc consistency value ordering heuristics. Results are summarized in Table 5.1 and

show that relative performance of the methods on Generalized Sudoku is similar to the

performance on Model RB.

TSC , sec
(

TV SC

TSC

) (

TMC

TSC

) (

TpAC

TSC

)

4x3, 90 holes 1.809 0.755 1.278 22.421

7x4, 357 holes 21.328 0.868 3.889 3.826

Table 5.1: Generalized Sudoku

5.4.4 Deployment patterns

One might ask whether trivial methods for selective deployment would work, such

as estimating solution counts for a certain number of assignments in the beginning of

the search. We examined deployment patterns of VOI-driven SC with (γ = 10−3)

on several instances of different hardness. For all instances, the solution counts were

estimated at varying rates during all stages of the search, and the deployment patterns

differed between the instances, so a simple deployment scheme seems unlikely.

VOI-driven deployment also compares favorably to random deployment. Table 5.2

shows performance of VOI-driven deployment for γ = 10−3 and of uniform random

deployment, with total number of solution count estimations equal to that of the VOI-

driven deployment. For both schemes, the values for which solution counts were not
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estimated were ordered randomly, and the search was repeated 20 times. The mean

search time for the random deployment is ≈ 1.6 times longer than for the VOI-driven

deployment, and has ≈ 100 times greater standard deviation.

mean(T ), sec median(T ), sec sd(T ), sec

VOI-driven 19.841 19.815 0.188

random 31.421 42.085 20.038

Table 5.2: VOI-driven vs. random deployment

5.5 Conclusion and Further Research

This study suggests a model for adaptive deployment of value ordering heuristics in

algorithms for constraint satisfaction problems. The approach presented here does

not attempt to introduce new heuristics or solution-count estimates; rather, an “off the

shelf” heuristic is deployed selectively based on value of information, thereby signif-

icantly reducing the heuristic’s “effective” computational overhead, with an improve-

ment in performance for problems of different size and hardness. As a case study,

the model was applied to a value-ordering heuristic based on solution count estimates,

and a steady improvement in the overall algorithm performance was achieved com-

pared to always computing the estimates, as well as to other simple deployment tactics.

The experiments showed that for many problem instances the optimum performance

is achieved when solution counts are estimated only in a relatively small number of

search states.

The methods introduced in this study can be extended in numerous ways. First,

generalization of the VOI to deploy different types of heuristics for CSP, such as

variable ordering heuristics, as well as reasoning about deployment of more than one

heuristic at a time, are natural non-trivial extensions. Second, an explicit evaluation

of the quality of the distribution model is an interesting issue, coupled with a better

candidate model of the distribution. Such distribution models can also employ more

disciplined statistical learning methods in tandem, as suggested above. Finally, apply-

ing the methods suggested here to search in other domains can be attempted, especially

to heuristics for planning. In particular, examining whether the metareasoning scheme

can improve reasoning over deployment of heuristics based solely on learning methods

is an interesting research issue, partially explored, for a different domain, in Chapter 7.
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Chapter 6

VOI-aware Monte-Carlo Tree Search

Monte Carlo Tree Search (MCTS), and especially UCT [KS06] appears in numerous

search applications, such as [EKH10]. Although these methods are shown to be suc-

cessful empirically, most authors appear to be using UCT “because it has been shown

to be successful in the past”, and “because it does a good job of trading off exploration

and exploitation”. While the latter statement may be correct for the Multi-armed Ban-

dit problem (MAB) and for the UCB1 algorithm [ACBF02], we argue that a simple

reconsideration from basic principles can result in schemes that outperform UCT.

The core issue is that in MCTS for adversarial search and search in “games against

nature” the goal is typically to find the best first action of a good (or even optimal)

policy, which is closer to minimizing the simple regret, rather than the cumulative

regret minimized by UCB1. However, the simple and the cumulative regret cannot be

minimized simultaneously; moreover, [BMS11] shows that in many cases the smaller

the cumulative regret, the greater the simple regret.

We begin with background definitions and related work. VOI estimates for arm

pulls in MAB are presented, and a VOI-aware sampling policy is suggested, both for

the simple regret in MAB and for MCTS. Finally, the performance of the proposed

sampling policy is evaluated on sets of Bernoulli arms and on Computer GO, showing

the improved performance.

6.1 Background and Related Work

Monte-Carlo tree search was initially suggested as a scheme for finding approximately

optimal policies for Markov Decision Processes (MDP). MCTS explores an MDP by
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performing rollouts—trajectories from the current state to a state in which a termina-

tion condition is satisfied (either the goal or a cutoff state).

Taking a sequence of samples in order to minimize the regret of a decision based on

the samples is captured by the Multi-armed Bandit problem (MAB) [VM05]. In MAB,

we have a set of K arms. Each arm can be pulled multiple times. When the ith arm is

pulled, a random reward Xi from an unknown stationary distribution is encountered.

In the cumulative setting, all encountered rewards are collected. UCB1 [ACBF02] was

shown to be near-optimal in this respect. UCT, an extension of UCB1 to MCTS is

described in [KS06], and shown to outperform many state of the art search algorithms

in both MDP and adversarial search [GW06, EKH10]. In the simple regret setting, the

agent gets to collect only the reward of the last pull.

Definition. The simple regret of a sampling policy for MAB is the expected difference

between the best expected reward µ∗ and the expected reward µj of the empirically

best arm Xj = maxi X i:

Er =
K
∑

j=1

∆j Pr(Xj = max
i

X i) (6.1)

where ∆j = µ∗ − µj .

Strategies that minimize the simple regret are called pure exploration strategies

[BMS11].

A different scheme for control of sampling can use the principles of rational metar-

easoning (Section 2.2). In particular, a pure exploration strategy based on the princi-

ples of rational metareasoning would always select a sample with the highest value of

information, and stop the sampling when the VOI of the sample is lower than the cost.

6.2 Upper bounds on Value of Information

In many practical applications of the selection problem, such as search in the game of

Go, prior distributions are unavailable.1 In such cases, one can still bound the value of

information of myopic policies using concentration inequalities to derive distribution-

1The analysis is also applicable to some Bayesian settings, using “fake” samples to simulate prior

distributions.
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independent bounds on the VOI. We obtain such bounds under the following assump-

tions:

1. Samples are iid given the value of the arms (variables), as in the Bayesian

schemes such as Bernoulli sampling.

2. The expectation of a selection in a belief state is equal to the sample mean (and

therefore, after sampling terminates, the arm with the greatest sample mean will

be selected).

When considering possible samples in the blinkered semi-myopic setting, two

cases are possible: either the arm α with the highest sample mean Xα is tested, and

Xα becomes lower than Xβ of the second-best arm β; or, another arm i is tested, and

X i becomes higher than Xα.

Our bounds below are applicable to any bounded distribution (without loss of gen-

erality bounded in [0, 1]). Similar bounds can be derived for certain unbounded dis-

tributions, such as the normally distributed prior value with normally distributed sam-

pling. We derive a VOI bound for testing an arm a fixed N times, where N can be

the remaining budget of available samples or any other integer quantity. Denote by Λb
i

the intrinsic VOI of testing the ith arm N times, the number of samples already taken

from the ith arm by ni, and the sample mean of m outcomes from the ith arm by Xm
i ,

for any m.

Theorem 1. Λb
i is bounded from above as

Λb
i|i 6=α ≤

N(1−X
nα

α )

ni

Pr(X
ni+N

i ≥ X
nα

α )

Λb
α ≤

NX
nβ

β

nα

Pr(X
nα+N

α ≤ X
nβ

β ) (6.2)

Proof. For the case i 6= α, the probability that the ith arm is finally chosen instead of

α is Pr(X
ni+N

i ≥ X
nα

α ). Xi ≤ 1, therefore X
ni+N

i ≤ X
nα

α + N(1−X
nα
α )

N+ni
. Hence, the

intrinsic value of blinkered information is at most:

N(1−X
nα

α )

N + ni

Pr(X
ni+N

i ≥ X
nα

α )

≤ N(1−X
nα

α )

ni

Pr(X
ni+N

i ≥ X
nα

α ) (6.3)
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N is dropped from the denominator to make the bound proportional to N for the sake

of further derivations.

Proof for the case i = α is similar.

The probabilities can be bounded from above using the Hoeffding inequality [Hoe63]:

Theorem 2. For any A ≥ X
ni

i|i 6=α and B ≤ X
nα

α the probabilities Pr(X
ni+N

i|i 6=α ≥ A),

Pr(X
nα+N

α ≤ B) are bounded from above as

Pr(X
ni+N

i|i 6=α ≥ A) ≤ 2 exp
(

−ϕ(A−X
ni

i )2ni

)

Pr(X
nα+N

α ≤ B) ≤ 2 exp
(

−ϕ(Xnα

α − B)2nα

)

(6.4)

where ϕ = min

(

2( 1+n/N

1+
√

n/N
)2
)

= 8(
√
2− 1)2 > 1.37.

Proof. Equation (6.4) follows from the observation that X
ni+N

i > A if and only if the

mean X
N

i of N samples from ni + 1 to ni +N is at least A+ (A−X
ni

i )ni

N
.

For any δ, the probability that X
ni+N

i is greater than A is less than the probability

that E[Xi] ≥ X
n

i + δ or X
N

i ≥ E[Xi] + A − X
ni

i − δ + (A − X
ni

i )ni

N
, thus, by the

union bound, less than the sum of the probabilities:

Pr(X
ni+N

i ≥ A)

≤ Pr(E[Xi]−X
ni

i ≥ δ) (6.5)

+ Pr
(

X
N

i − E[Xi] ≥ A−X
ni

i − δ + (A−X
ni

i )
ni

N

)

Bounding the probabilities on the right-hand side using the Hoeffding inequality, ob-

tain:

Pr(X
ni+N

i ≥ A)

≤ exp(−2δ2ni)

+ exp

(

−2
(

(A−X
ni

i )
(

1 +
ni

N

)

− δ
)2

N

)

(6.6)

Find δ for which the two terms on the right-hand side of Equation (6.6) are equal:

exp(−δ2n) = exp

(

−2
(

(A−X
ni

i )(1 +
ni

N
)− δ

)2

N

)

(6.7)
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Solve Equation (6.7) for δ: δ =
1+

ni
N

1+
√

ni
N

(A−X
ni

i ) ≥ 2(
√
2− 1)(A−X

ni

i ). Substitute

δ into Equation (6.6) and obtain

Pr(X
ni+N

i ≥ A)

≤ 2 exp



−2
(

1 + ni

N

1 +
√

ni

N

(X
nα

α −X
ni

i )

)2

ni





≤ 2 exp(−8(
√
2− 1)2(A−X

ni

i )2ni)

= 2 exp(−ϕ(A−X
ni

i )2ni) (6.8)

Derivation for the case i = α is similar.

Corollary 3. An upper bound on the VOI estimate Λb
i is obtained by substituting Equa-

tion (6.4) into (6.2).

Λb
i|i 6=α ≤ Λ̂b

i =
2N(1−X

nα

α )

ni

exp
(

−ϕ(Xnα

α −X
ni

i )2ni

)

(6.9)

Λb
α ≤ Λ̂b

α =
2NX

nβ

β

nα

exp
(

−ϕ(Xnα

α −X
nβ

β )2nα

)

More refined bounds can be obtained through tighter estimates on the probabilities

in Equation (6.2), for example, based on the empirical Bernstein inequality [MP09], or

through a more careful application of the Hoeffding inequality, resulting in Theorem 4:

Theorem 4. Λb
i is bounded from above as

Λb
i|i 6=α ≤

√
π√
ϕni

[

erf

((

X
nα

α +
N

N + ni

(1−X
nα

α )−X
ni

i

)√
ϕni

)

− erf
(

(Xα −X
ni

i )
√
ϕni

)

]

Λb
α ≤

√
π√

ϕnα

[

erf

((

X
nα

α −X
nβ

β +
N

N + nα

X
nβ

β

)√
ϕnα

)

− erf
(

(X
nα

α −X
nβ

β )
√
ϕnα

)

]

(6.10)

Proof. By definition,

Λb
i =

X
nα
α + N

N+ni
(1−X

nα
α )

∫

Xα

(x−X
nα

α ) Pr
(

X
ni+N

i = x
)

dx (6.11)
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Integrating by parts, obtain

Λb
i =− (x−X

nα

α ) Pr
(

X
ni+N

i ≥ x
)∣

∣

∣

X
nα
α + N

N+ni
(1−X

nα
α )

X
nα
α

+

X
nα
α + N

N+ni
(1−X

nα
α )

∫

Xα

Pr
(

X
ni+N

i ≥ x
)

dx

=

X
nα
α + N

N+ni
(1−X

nα
α )

∫

Xα

Pr
(

X
ni+N

i ≥ x
)

dx (6.12)

Substituting the bound on Pr
(

X
ni+N

i ≥ x
)

from Theorem 2 into (6.12), finally ob-

tain:

Λb
i ≤

X
nα
α + N

N+ni
(1−X

nα
α )

∫

Xα

2 exp
(

−ϕ(x−X
ni

i )2ni

)

dx

=

√
π√
ϕni

[

erf

((

X
nα

α +
N

N + ni

(1−X
nα

α )−X
ni

i

)√
ϕni

)

− erf
(

(Xα −X
ni

i )
√
ϕni

)

]

(6.13)

Note that while bound (6.10) is tighter than (6.9), numerical evaluation of (6.10) in-

volves computing the difference between two values of erf, a slowly growing function

for larger values of arguments, and thus requires care to compensate for rounding error.

Derivation for the case i = α is similar.

It is important to note that Corollary 3 and Theorem 4 provide actual bounds, rather

than “in probability”.

Selection problems usually separate out the decision of (1) what to sample and (2)

whether to sample or to stop (called the stopping criterion). In this section we will

examine the first issue, along with the empirical evaluation of the above approximate

algorithms. The second issue — the stopping criterion — is important in the context of

sampling in trees, when the selection problem is solved multiple times, at every node

along the path. This issue is explored in Section 6.3.
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Assuming that the sample costs are constant, a semi-myopic policy will decide

to test the arm that has the best current VOI estimate. When the distributions are

unknown, it makes sense to use the upper bounds established in Theorem 1, as we do in

what follows. This evaluation assumes a fixed budget of samples, which is completely

used up by each of the candidate schemes, making a stopping criterion irrelevant.
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Figure 6.1: Average regret of various policies as a function of the fixed number of

samples in a 25-action Bernoulli sampling problem, over 10000 trials.

The sampling policies are compared on random Bernoulli selection problem in-

stances. Figure 6.1 shows results for randomly-generated selection problems with 25

Bernoulli arms, where the mean rewards of the arms are distributed uniformly in [0, 1],

for a range of sample budgets 200..2000, with multiplicative step of 2, averaging over

10000 trials2. We compare UCB1 with the policies based on the bounds in Equa-

tion (6.9) (VOI) and Equation (6.10) (VOI+). UCB1 is always considerably worse

than the VOI-aware sampling policies. The source code is available from http://

github.com/dtolpin/phd-source-code/tree/master/chapter-6.

6.3 Sampling in trees

The previous section addressed the selection problem in the flat case. Selection in trees

is more complicated. The goal of Monte-Carlo tree search [CBSS08] at the root node

is usually to select an action that appears to be the best based on outcomes of search

rollouts. But the goal of rollouts at non-root nodes is different than at the root: here it

is important to better approximate the value of the node, so that selection at the root

can be more informed. The exact analysis of sampling at internal nodes is outside the

295% confidence intervals are too small to be shown.
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scope of this study. At present we have no better proposal for internal nodes than to

use UCT there.

We thus propose the following hybrid sampling scheme [TS12a]: at the root node,

sample based on the VOI estimate; at non-root nodes, sample using UCT.

Strictly speaking, even at the root node the stationarity assumptions underlying

our belief-state MDP for selection do not hold exactly. UCT is an adaptive scheme,

and therefore the values generated by sampling at non-root nodes will typically cause

values observed at children of the root node to be non-stationary. Nevertheless, sam-

pling based on VOI estimates computed as for stationary distributions works well in

practice. As illustrated by the empirical evaluation (Section 6.3.3), estimates based on

upper bounds on the VOI result in good sampling policies, which exhibit performance

comparable to the performance of some state-of-the-art heuristic algorithms.

6.3.1 Stopping criterion

When a sample has a known cost commensurable with the value of information of

a measurement, an upper bound on the intrinsic VOI can also be used to stop the

sampling if the intrinsic VOI of any arm is less than the total cost of sampling C:

maxi Λi ≤ C.

The VOI estimates of Equations (6.2) and (6.9) include the remaining sample bud-

get N as a factor, but given the cost of a single sample c, the cost of the remaining

samples accounted for in estimating the intrinsic VOI is C = cN . N can be dropped

on both sides of the inequality, giving a reasonable stopping criterion:

1

N
Λb

α ≤
X

nβ

β

nα

Pr(X
nα+N

α ≤ X
nα

β ) ≤ c

1

N
max

i
Λb

i ≤max
i

(1−X
nα

α )

ni

Pr(X
ni+N

i ≥ X
nα

α ) ≤ c

∀i : i 6= α (6.14)

The empirical evaluation (Section 6.3.3) confirms the viability of this stopping crite-

rion and illustrates the influence of the sample cost c on the performance of the sam-

pling policy. When the sample cost c is unknown, one can perform initial calibration

experiments to determine a reasonable value, as done in the following.
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6.3.2 Sample redistribution in trees

The above hybrid approach assumes that the information obtained from rollouts in the

current state is discarded after a real-world action is selected. In practice, many suc-

cessful Monte-Carlo tree search algorithms reuse rollouts generated at earlier search

states, if the sample traverses the current search state during the rollout; thus, the value

of information of a rollout is determined not just by the influence on the choice of the

action at the current state, but also by its potential influence on the choice at future

search states.

One way to account for this reuse would be to incorporate the ‘future’ value of in-

formation into a VOI estimate. However, this approach requires a nontrivial extension

of the theory of metareasoning for search. Alternately, one can behave myopically

with respect to the search tree depth:

1. Estimate VOI as though the information is discarded after each step,

2. Stop early if the VOI is below a certain threshold (see Section 6.3.1), and

3. Save the unused sample budget for search in future states, such that if the nomi-

nal budget is N , and the unused budget in the last state is Nu, the search budget

in the next state will be N +Nu.

In this approach, the cost c of a sample in the current state is the VOI of increasing the

budget of a future state by one sample. It is unclear whether this cost can be accurately

estimated, but supposing a fixed value for a given problem type and algorithm imple-

mentation would work. Indeed, the empirical evaluation (Section 6.3.3) confirms that

stopping and sample redistribution based on a learned fixed cost substantially improve

the performance of the VOI-based sampling policy in game tree search.

6.3.3 Playing Go against UCT

The hybrid policies were compared on the game Go, a search domain in which UCT-

based MCTS has been particularly successful [GW06]. A modified version of Pachi

[BLG11], a state of the art Go program, was used for the experiments:

• The UCT engine of Pachi was extended with VOI-aware sampling policies at

the first step.
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• The stopping criterion for the VOI-aware policy was modified and based solely

on the sample cost, specified as a constant parameter. The heuristic stopping

criterion for the original UCT policy was left unchanged.

• The time-allocation model based on the fixed number of samples was modified

for both the original UCT policy and the VOI-aware policies such that

– Initially, the same number of samples is available to the agent at each step,

independently of the number of pre-simulated games;

– If samples were unused at the current step, they become available at the

next step.

While the UCT engine is not the most powerful engine of Pachi, it is still a strong

player. On the other hand, additional features of more advanced engines would ob-

struct the MCTS phenomena which are the subject of the experiment. The source code

is available from http://github.com/dtolpin/uct. The engines were com-
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Figure 6.2: Winning rate of the VOI-aware policy in Go as a function of the cost c, for

varying numbers of samples per ply.

pared on the 9x9 board, for 5000, 7000, 1000, and 15000 samples (game simulations)

per ply, each experiment repeated 1000 times. Figure 6.2 depicts a calibration exper-

iment, showing the winning rate of the VOI-aware policy against UCT as a function

of the stopping threshold c (if the maximum VOI of a sample is below the threshold,

the simulation is stopped, and a move is chosen). Each curve in the figure corresponds

to a certain number of samples per ply. For the stopping threshold of 10−6, the VOI-

aware policy is almost always better than UCT, and reaches the winning rate of 64%

for 10000 samples per ply.

Figure 6.3 shows the winning rate of VOI against UCT c = 10−6. In agreement

with the intuition (Section 6.3.2), VOI-based stopping and sample redistribution is
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Figure 6.3: Winning rate of the VOI-aware policy in Go as a function of the number

of samples, fixing cost c = 10−6.

most influential for intermediate numbers of samples per ply. When the maximum

number of samples is too low, early stopping would result in poorly selected moves.

On the other hand, when the maximum number of samples is sufficiently high, the VOI

of increasing the maximum number of samples in a future state is low.

Note that if we disallowed reuse of samples in both Pachi and in our VOI-based

scheme, the VOI based-scheme win rate is even higher than shown in Figure 6.3. This

is as expected, as this setting (which is somewhat unfair to UCT-Pachi) is closer to

meeting the assumptions underlying the selection MDP.

6.4 Conclusion and Further Research

This work suggested a Monte-Carlo sampling policy in which sample selection is

based on upper bounds on the value of information. Empirical evaluation showed

that this policy outperforms heuristic algorithms for pure exploration in MAB, as well

as for MCTS.

MCTS still remains a largely unexplored field of application of VOI-aware algo-

rithms. More elaborate VOI estimates, taking into consideration re-use of samples in

future search states should be considered. The policy introduced here differs from the

UCT algorithm only at the first step, where the VOI-aware decisions are made. Con-

sistent application of principles of rational metareasoning at all steps of a rollout may

further improve the sampling.
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Chapter 7

Towards Rational Deployment of

Multiple Heuristics in A*

This study examines improvements to the A∗ algorithm when we have several available

admissible heuristics h1, h2, ... . Clearly, we can evaluate all these heuristics, and use

their maximum as an admissible heuristic, a scheme we call A∗
MAX . The problem with

naive maximization is that all the heuristics are computed for all the generated nodes.

In order to reduce the time spent on heuristic computations, Lazy A∗ (or LA∗, for short)

evaluates the heuristics one at a time, lazily. When a node n is generated, LA∗ only

computes one heuristic, h1(n), and adds n to OPEN . Only when n re-emerges as

the top of OPEN is another heuristic, h2(n), evaluated; if this results in an increased

heuristic estimate, n is re-inserted into OPEN . LA∗ is as informative as A∗
MAX , but can

significantly reduce search time, as we will not need to compute h2 for many nodes.

LA∗ reduces the search time, while maintaining the informativeness of A∗
MAX .

However, if the goal is reducing search time, it is sometimes better to compute a fast

heuristic on several nodes, rather than to compute a slow but informative heuristic

on only one node. We combine the ideas of lazy heuristic evaluation and of trading

off more node expansions for less heuristic computation time, into a new variant of

LA∗ called rational lazy A∗ (RLA∗). RLA∗ is based on rational metareasoning, and

uses a myopic value-of-information criterion to decide whether to compute h2(n) or

to bypass the computation of h2 and expand n immediately when n re-emerges from

OPEN . RLA∗ aims to reduce search time, even at the expense of more node expan-

sions than A∗
MAX .
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7.1 Background and Related Work

The A∗ algorithm [HNR68] is a best-first heuristic search algorithm guided by the cost

function f(n) = g(n) + h(n). If the heuristic h(n) is admissible (never overestimates

the real cost to the goal) then the set of nodes expanded by A∗ is both necessary and

sufficient to find the optimal path to the goal [DP85].

Throughout this study we assume for clarity that we have two available admissible

heuristics, h1 and h2. Unless stated otherwise, we assume that h1 is faster to compute

than h2 but that h2 is weakly more informed, i.e., h1(n) ≤ h2(n) for the majority of

the nodes n, although counter cases where h1(n) > h2(n) are possible. We say that

h2 dominates h1, if such counter cases do not exist and h2(n) ≥ h1(n) for all nodes

n. We use f1(n) to denote g(n) + h1(n). Likewise, f2(n) denotes g(n) + h2(n),

and fmax(n) denotes g(n) + max(h1(n), h2(n)). We denote the cost of the optimal

solution by C∗. Additionally, we denote the computation time of h1 and of h2 by t1

and t2, respectively and denote the overhead of an insert/pop operation in OPEN by

to. Unless stated otherwise we assume that t2 is much greater than t1 + to.

7.1.1 Selective MAX

Based on the idea of of trading off more node expansions for less heuristic com-

putation time, [DKM12] formulated selective max (Sel-MAX), an online learning

scheme which chooses one heuristic to compute at each state. Sel-MAX chooses to

compute the more expensive heuristic h2 for node n when its classifier predicts that

h2(n)− h1(n) is greater than some threshold, which is a function of heuristic compu-

tation times and the average branching factor.

7.1.2 Lazy A∗

The idea behind the LA∗ algorithm was briefly mentioned by [ZB12] in the context of

the MAXSAT heuristic for planning domains. [Hel06a] described deferred evaluation

of heuristics in the context of the Fast Downward Planning System. In deferred eval-

uation, the successors of node n are placed in the open list with the heuristic estimate

of n and heuristically evaluated only when expanded. The technique bears a similarity

to a special case of LA∗ where the first heuristic always returns 0.

The pseudo-code for LA∗ is depicted as Algorithm 10. LA∗ mainly aims to reduce
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computations of h2. LA∗is very similar to A∗. In fact, without lines 8–12, LA∗ would

Algorithm 10 Lazy A∗

1: procedure LAZY-A∗

2: Apply all heuristics to Start

3: Insert Start into OPEN

4: while OPEN not empty do

5: n← best node from OPEN

6: if Goal(n) then return Trace(n)

7: end if

8: if h2 was not applied to n then

9: Apply h2 to n
10: Insert n into OPEN

11: continue ⊲ next node in OPEN

12: end if

13: for all child c of n do

14: Apply h1 to c
15: Insert c into OPEN

16: end for

17: Insert n into CLOSED

18: end while

19: return FAILURE

20: end procedure

be identical to A∗ using the h1 heuristic. When a node n is generated we only compute

h1(n) and n is added to OPEN (lines 13–16), without computing h2(n) yet. When n

is first removed from OPEN (lines 8–12), we compute h2(n) and reinsert it into OPEN

, this time with fmax(n).

It is easy to see that LA∗ is as informative as A∗
MAX , in the sense that both A∗

MAX and

LA∗ expand a node n only if fmax(n) is the best f -value in OPEN. Therefore, LA∗ and

A∗
MAX generate and expand and the same set of nodes, up to differences caused by tie-

breaking.

In its general form A∗ generates many nodes that it does not expand. These nodes,

called surplus nodes [FGS+12], are in OPEN when we expand the goal node with f =

C∗. All nodes in OPEN with f > C∗ are surely surplus but some nodes with f = C∗

may also be surplus. The number of surplus nodes in OPEN can grow exponentially in

the size of the domain, resulting in significant costs.

LA∗ avoids h2 computations for many of these surplus nodes. Consider a node n

that is generated with f1(n) > C∗. This node is inserted into OPEN but will never
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reach the top of OPEN , as the goal node will be found with f = C∗. In fact, if OPEN

breaks ties in favor of small h-values, the goal node with f = C∗ will be expanded as

soon as it is generated and such savings of h2 will be obtained for some nodes with

f1 = C∗ too. We refer to such nodes where we saved the computation of h2 as good

nodes. Other nodes, those with f1(n) < C∗ (and some with f1(n) = C∗) are called

regular nodes as we apply both heuristics for them.

7.2 Rational Lazy A*

Using the principles of rational metareasoning (Section 2.2), theoretically every com-

putational operator (heuristic function evaluation, node expansion, open list operation)

should be treated as an action in a sequential decision-making meta-level problem, and

actions should be chosen so as to achieve the minimal expected search time. However,

the appropriate general metareasoning problem is extremely hard to define precisely,

and even harder to solve optimally.

Therefore, we focus here on just one decision type, to be made in the context of

LA∗, when n re-emerges from OPEN (Line 8). We have two options: (1) Evaluate

the second heuristic h2(n) and add the node back to OPEN (lines 8–12) like LA∗, or

2 bypass the computation of h2(n) and expand n right away (lines 13–16), thereby

saving time by not computing h2, at the risk of additional expansions and evaluations

of h1. A method which attempts to optimally manage this trade-off, which we call

Rational Lazy A* (RLA∗), is presented next. In order to choose rationally we define a

criterion based on value of information (VOI) of evaluating h2(n) in this context.

The only addition of RLA* to LA* is the option to bypass h2 computations (lines 8–

12). Suppose that we choose to compute h2 — this results in one of the following

outcomes:

1. n is eventually expanded.

2. n is re-inserted into OPEN , and the goal is found without ever expanding n.

Observe that computing h2 can be beneficial only in outcome 2, where potential

time savings are due to pruning a search subtree at the expense of the time t2(n). How-

ever, whether outcome 2 takes place after a given state is not known to the algorithm

until the goal is found, and the algorithm must decide whether to evaluate h2 according

to what it believes to be the probability of each of the outcomes. The time wasted by
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being sub-optimal in deciding whether to evaluate h2 is called the regret of the deci-

sion. We derive a rational policy for deciding when to evaluate h2, under the following

assumptions:

1. The decision is made myopically: the algorithm continues to behave like LA∗ start-

ing with the children of n.

2. h2 is consistent: if evaluating h2 is benefitial on n, it is also benefitial on any

successor of n.

If RLA∗ is indeed better than LA∗, the first assumption results in an upper bound on

the regret. The empirical evaluation (Section 7.3) covers also the cases where h2 is not

consistent. Despite violation of the second assumption, RLA∗ still exhibits the best

performance among the compared algorithms.

If h2(n) is not helpful and we decide to compute it, the effort for evaluating h2(n)

turns out to be wasted. On the other hand, if h2(n) is helpful but we decide to bypass

it, we needlessly expand n. Due to the myopic assumption, RLA∗ would evaluate both

h1 and h2 for all children of n. Due to consistency of h2, the children of n will never

be expanded.

Compute h2 Bypass h2

h2 helpful 0 te + (b(n)− 1)td
h2 not helpful td 0

Table 7.1: Time losses in Rational Lazy A*

Table 7.1 summarizes the regret of each possible decision, for each possible future

outcome; each column in the table represents a decision, while each row represents a

future outcome. In the table, td is the time to compute h2 and re-insert n into OPEN

thus delaying the expansion of n, te is the time to remove n from OPEN , expand

n, evaluate h1 on each of the b(n) (“local branching factor”) children {n′} of n, and

insert {n′} into the open list. Computing h2 needless “wastes” td time. Bypassing h2

computation when h2 would have been helpful “wastes” te + b(n)td time, but because

computing h2 would have cost td, the regret is te + (b(n)− 1)td.

Let us denote the probability that h2 is helpful by ph. The expected regret of

computing h2 is thus (1 − ph)td. On other hand, the expected regret of bypassing

h2 is ph(te + (b(n) − 1)td). As we wish to minimize the expected regret, we should
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thus evaluate h2 just when:

(1− ph)td < ph(te + (b(n)− 1)td) (7.1)

or equivalently:

(1− b(n)ph)td < phte (7.2)

If phb(n) ≥ 1, then the expected regret is minimized by always evaluating h2,

regardless of the values of td and te. In these cases, RLA* cannot be expected to do

better than LA∗. For example, in the 15-puzzle and its variants, the effective branching

factor is ≈ 2. Therefore, if h2 is expected to be helpful for more than half of the nodes

n on which LA∗ evaluates h2(n), then one should simply use LA∗.

For phb(n) < 1, the decision of whether to evaluate h2 depends on the values of td

and te:

evaluate h2 if td <
ph

1− phb(n)
te (7.3)

Let us analyze td and te. Denote by tc the time to generate the children of n. Then we

have:

td = t2 + to

te = to + tc + b(n)t1 + b(n)to (7.4)

By substituting (7.4) into (7.3), obtain: evaluate h2 if:

t2 + to <
ph [tc + b(n)t1 + (b(n) + 1)to]

1− phb(n)
(7.5)

The factor ph
1−phb(n)

depends on the potentially unknown probability ph, making it diffi-

cult to reach the optimum decision. However, if our goal is just to do better than LA∗,

then it is safe to replace ph by an upper bound on ph.

We now turn to implementation-specific estimation of the respective runtimes.

OPEN in domain-independent versions of A∗ is frequently implemented as a prior-

ity queue, and thus we have, approximately, to = τ logNo for some τ , when the size

of OPEN is No. Evaluating h1 is cheap in many domains, as is the case with the Man-

hattan Distance heuristic in discrete domains, to is the most significant part of te. In
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such cases, rule (7.5) can be approximated as (7.6):

evaluate h2 if t2 <
τph

1− phb(n)
(b(n) + 1) logNo (7.6)

Rule (7.6) recommends to evaluate h2 mostly at late stages of the search, when the

open list is large, and in nodes with a higher branching factor.

In other domains, such as planning, both t1 and t2 are significantly greater than

both to and tc, and terms not involving t1 or t2 can be dropped from (7.5), resulting in

Rule (7.7):

evaluate h2 if
t2
t1

<
phb(n)

1− phb(n)
(7.7)

The right-hand side of (7.7) grows with b(n), and here it is beneficial to evaluate h2

only for nodes with a sufficiently large branching factor. On rearranging equation 7.7,

we get the criterion which we actually use for planning domains, which is to evaluate

h2 only when:

b(n) >
t2

t1ph

(

1 + t2
t1

) (7.8)

7.3 Empirical Evaluation

7.3.1 Weighted 15-puzzle

In the uniform-cost 15 puzzle, the open list contains only a few different f-costs, and

is frequently implemented using buckets, violating the assumption of logarithmic time

for which RLA∗ is beneficial. In order to better evaluate RLA∗, we therefore use the

weighted 15-puzzle variant, where the cost of moving each tile is equal to the number

on the tile. For consistency of comparison, we used a subset of 36 problem instances

out of the set of 100 15-puzzle instances by [Kor85], keeping the problems which could

be solved with 2Gb of RAM and 15 minutes timeout using the weighted Manhattan

distance heuristic (WMD) for h1. As the second, expensive and informative, h2 heuris-

tic for LA∗ and RLA∗, we use a heuristic based on lookaheads [SKFH10]. Given a

bound d we applied a bounded depth-first search from a node n and backtracked when

we reached leaf nodes l for which g(l) + WMD(l) > g(n) + WMD(n) + d. f -

values from leaves were propagated to n. The source code is available from http://
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A∗ LA∗ RLA∗

lookahead generated time Good1 N2 time generated Good1 Good2 N2 time

6 889,930 0.601 257,598 632,332 0.462 944,750 299,479 239,320 405,951 0.446

8 740,513 0.700 197,107 543,406 0.431 892,216 233,370 303,655 260,823 0.402

10 612,010 0.929 145,687 466,327 0.474 859,220 278,431 445,846 134,943 0.378

12 454,171 1.128 95,118 359,053 0.621 807,846 277,783 428,686 101,377 0.465

Table 7.2: Weighted 15 puzzle: comparison of A∗
max, Lazy A∗, and Rational Lazy A∗

github.com/dtolpin/phd-source-code/tree/master/chapter-7.

Table 7.2 presents the results averaged on all instances solved. The running times

are reported relative to the time of A∗ with WMD (with no lookahead), which gen-

erated 2012643 nodes (not reported in the table). The first 3 columns of Table 7.2

shows the results for A∗ with the lookahead heuristic for different lookahead depths.

The best time is achieved for lookahead 6, (0.601 compared to A∗ with WMD). The

fact that the time does not continue to decrease with deeper lookaheads is clearly due

to the fact that although the resulting heuristic improves as a function of lookahead

depth (expanding and generating fewer nodes), the increasing overheads of computing

the heuristic eventually outweights the computation time it saved by expanding fewer

nodes.

The next 3 columns show the results for LA∗ with WMD as h1, lookahead as h2,

for different lookahead depths (LA∗ generates the same number of nodes as A∗). The

Good1 column presents the number of nodes where LA∗saved the computation of h2

while the N2 column presents the number of nodes where h2 was computed. ≈ 28% of

nodes were Good1 and since t2 was the most dominant time cost, most of this saving

is reflected in the timing results. The best results are achieved for lookahead 8, with a

runtime of 0.431 compared to A∗ with WMD.

The final columns show the results of RLA∗, with the values of τ , ph, t2 calibrated

for each lookahead depth using a small subset of problem instances. The Good2 col-

umn counts the number of times that RLA∗ decided to bypass the h2 computation and

expand the node right away. Observe that RLA∗ outperforms LA∗, which in turn out-

performs standard A*, for all lookahead depths. The lowest time with RLA∗ (0.378 of

A∗with WMD) and empirically best τ was obtained for lookahead 10. That is achieved

because the more expensive h2 heuristic is computed less often, reducing its effective

computational overhead, with little or no adverse effect in the number of expanded

nodes. Although LA* expanded fewer nodes, RLA∗ performed much fewer h2 com-

putations as can be seen in the table, resulting in decreased overall runtimes for all
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lookahead depths.

The case of both t1 and t2 being significantly larger than to and tc can also be

modeled using the 15-puzzle domain by considering only the time spent evaluating the

heuristics. Table 7.3 presents the results of solving the Weighted 15-puzzle obtained on

the the set of 100 15-puzzle instances by [Kor85], using the combination of weighted

Manhattan distance and linear conflict [HMY92] heuristics. Rows N1 and N2 present

the average numbers of evaluations of h1 and h2, rows T1 and T2 the average total times

(per instance) spent evaluating each of the heuristics. A∗
MAX evaluates both h1 and h2

A∗
MAX LA∗ RLA∗

N1 1,482,271 1,482,271 1,521,163

T1, sec 0.979 0.979 1.026

N2 1,482,271 1,117,826 868,182

T2, sec 4.122 2.425 1.938

T1 + T2, sec 5.101 3.404 2.964

Table 7.3: Weighted 15 puzzle: comparison of heuristic computation times in A∗
max,

Lazy A∗, and Rational Lazy A∗

on both nodes and is obviously the slowest. LA∗ evaluates h2 selectively, spending

40% less time evaluating h2 and 33% less time overall. RLA∗, using Rule (7.8),

spends 20% less time than LA∗ evaluating h2 at the expense of spending 4% more time

evaluating h1, and takes 12% less time than LA∗ and 40% less time than A∗
MAX overall.

7.3.2 Planning Domains

[TBS+13] presents results for comparing RLA∗and other algorithms on 42 planning

domains. In these domains, time spent evaluating heuristics constitutes approximately

90% of the total search time, hence applying rule (7.8) is justified. RLA∗ was com-

pared to LA∗ and to A∗ using each of the heuristics individually, as well as to the

max-based combination of the heuristics, and to the combination using selective-max

(Sel-MAX) [DKM12]. In the evaluation, RLA∗ solved most problem instances in the

shortest total search time.

Table 7.4 depicts the experimental results (provided by Erez Karpas). LA∗ and

RLA∗ were implemented on top of the Fast Downward planning system [Hel06b],

and two state of the art heuristics were used: the admissible landmarks heuristic hLA
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Problems Solved Planning Time (seconds) GOOD

Domain hLA lmcut max selmax LA∗ RLA∗ hLA lmcut max selmax LA∗ RLA∗ LA∗ RLA∗

airport 25 24 26 25 29 29 0.29 0.57 0.5 0.33bb 0.38 0.38 0.48 0.67

barman-opt11 4 0 0 0 0 3 N/A N/A N/A N/A N/A N/A N/A N/A

blocks 26 27 27 27 28 28 1.0 0.65 0.73 0.81 0.67 0.67 0.19 0.21

depot 7 6 5 5 6 6 2.27 2.69 3.17 3.14 2.73 2.75 0.06 0.06

driverlog 10 12 12 12 12 12 2.65 0.29 0.33 0.36 0.3 0.31 0.09 0.09

elevators-opt08 12 18 17 17 17 17 14.14 4.21 4.84 4.85 3.56 3.64 0.27 0.27

elevators-opt11 10 14 14 14 14 14 26.97 8.03 9.28 9.28 6.64 6.78 0.28 0.28

floortile-opt11 2 6 6 6 6 6 8.52 0.44 0.6 0.58 0.5 0.52 0.02 0.02

freecell 54 10 36 51 41 41 0.16 7.34 0.22 0.24 0.18 0.18 0.86 0.86

grid 2 2 1 2 2 2 0.1 0.16 0.18 0.34 0.15 0.15 0.17 0.17

gripper 7 6 6 6 6 6 0.84 1.53 2.24 2.2 1.78 1.25 0.01 0.4

logistics00 20 17 16 20 19 19 0.23 0.57 0.68 0.27 0.47 0.47 0.51 0.51

logistics98 3 6 6 6 6 6 0.72 0.1 0.1 0.11 0.1 0.1 0.07 0.07

miconic 141 140 140 141 141 141 0.13 0.55 0.58 0.57 0.16 0.16 0.87 0.88

mprime 16 20 20 20 21 20 1.27 0.5 0.51 0.5 0.44 0.45 0.25 0.25

mystery 13 15 15 15 15 15 0.71 0.35 0.38 0.43 0.36 0.37 0.3 0.3

nomystery-opt11 18 14 16 18 18 18 0.18 1.29 0.58 0.25 0.33 0.33 0.72 0.72

openstacks-opt08 15 16 14 15 16 16 2.88 1.68 3.89 3.03 2.62 2.64 0.44 0.45

openstacks-opt11 10 11 9 10 11 11 13.59 6.96 19.8 14.44 12.03 12.06 0.43 0.43

parcprinter-08 14 18 18 18 18 18 0.92 0.36 0.37 0.38 0.37 0.37 0.17 0.26

parcprinter-opt11 10 13 13 13 13 13 2.24 0.56 0.6 0.61 0.58 0.59 0.14 0.17

parking-opt11 1 1 1 3 2 2 9.74 22.13 17.85 7.11 6.33 6.43 0.64 0.64

pathways 4 5 5 5 5 5 0.5 0.1 0.1 0.1 0.1 0.1 0.1 0.12

pegsol-08 27 27 27 27 27 27 1.01 0.84 1.2 1.1 1.06 0.95 0.04 0.42

pegsol-opt11 17 17 17 17 17 17 4.91 3.63 5.85 5.15 4.87 4.22 0.04 0.38

pipesworld-notankage 16 15 15 16 15 15 0.5 1.48 1.12 0.85 0.9 0.91 0.42 0.42

pipesworld-tankage 11 8 9 9 9 9 0.36 2.24 1.02 0.47 0.69 0.71 0.62 0.62

psr-small 49 48 48 49 48 48 0.15 0.2 0.21 0.19 0.19 0.18 0.17 0.49

rovers 6 7 7 7 7 7 0.74 0.41 0.45 0.45 0.41 0.42 0.47 0.47

scanalyzer-08 6 13 13 13 13 13 0.37 0.25 0.27 0.27 0.26 0.26 0.06 0.06

scanalyzer-opt11 3 10 10 10 10 10 0.59 0.64 0.75 0.73 0.67 0.68 0.05 0.05

sokoban-opt08 23 25 25 24 26 27 3.94 1.76 2.19 2.96 1.9 1.32 0.04 0.4

sokoban-opt11 19 19 19 18 19 19 7.26 2.83 3.66 5.19 3.1 2.02 0.03 0.46

storage 14 15 14 14 15 15 0.36 0.44 0.49 0.45 0.44 0.42 0.21 0.28

tidybot-opt11 14 12 12 12 12 12 3.03 16.32 17.55 9.35 15.67 15.02 0.11 0.18

tpp 6 6 6 6 6 6 0.39 0.22 0.23 0.23 0.22 0.22 0.32 0.4

transport-opt08 11 11 11 11 11 11 1.45 1.24 1.41 1.54 1.25 1.26 0.04 0.04

transport-opt11 6 6 6 6 6 6 12.46 8.5 10.38 11.13 8.56 8.61 0.0 0.0

trucks 7 9 9 9 9 9 4.49 1.34 1.52 1.44 1.41 1.42 0.07 0.07

visitall-opt11 12 10 13 12 13 13 0.2 0.34 0.19 0.18 0.18 0.18 0.38 0.38

woodworking-opt08 12 16 16 16 16 16 1.08 0.71 0.75 0.75 0.66 0.67 0.56 0.56

woodworking-opt11 7 11 11 11 11 11 5.7 2.86 3.15 3.01 2.55 2.58 0.52 0.52

zenotravel 8 11 11 11 11 11 0.38 0.14 0.14 0.14 0.14 0.14 0.17 0.19

OVERALL 698 697 722 747 747 750 1.18 0.98 0.98 0.89 0.79 0.77 0.27 0.34

Table 7.4: Planning Domains — Number of Problems Solved, Total Planning Time,

and Fraction of Good Nodes

(used as h1) [KD09], and the landmark cut heuristic hLMCUT [HD09] (used as h2). On

average, hLMCUT computation is 8.36 times more expensive than hLA computation.

The leftmost part of the table shows the number of solved problems in each domain.

As the table demonstrates, RLA∗ solves the most problems, and LA∗ solves the same

number of problems as Sel-MAX. Thus, both LA∗ and RLA∗ are state-of-the-art in

cost-optimal planning. Looking more closely at the results, note that Sel-MAX solves

10 more problems than LA∗ and RLA∗ in the freecell domain. Freecell is one of

only three domains in which hLA is more informed than hLMCUT (the other two are

nomystery-opt11 and visitall-opt11), violating the basic assumptions behind LA∗ that

h2 is more informed than h1. If we ignore these domains, both LA∗ and RLA∗ solve

more problems than Sel-MAX.

The middle part of the Table 7.4 shows the geometric mean of planning time in

each domain, over the commonly solved problems (i.e., those that were solved by all
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6 methods). RLA∗ is the fastest overall, with LA∗ second. It is important to note

that both LA∗ and RLA∗ are very robust, and even in cases where they are not the

best they are never too far from the best. For example, consider the miconic domain.

Here, hLA is very informative and thus the variant that only computed hLA is the best

choice (but a bad choice overall). Observe that both LA∗ and RLA∗ saved 86% of

hLMCUT computations, and were very close to the best algorithm in this extreme case.

In contrast, the other algorithms that consider both heuristics (max and Sel-MAX)

performed very poorly here (more than three times slower).

The rightmost part of Table 7.4 shows the average fraction of nodes for which

LA∗ and RLA∗ did not evaluate the more expensive heuristic, hLMCUT , over the prob-

lems solved by both these methods. This is shown in the good columns. Our first obser-

vation is that this fraction varies between different domains, indicating why LA∗ works

well in some domains, but not in others. Additionally, we can see that in domains

where there is a difference in this number between LA∗ and RLA∗, RLA∗ usually

performs better in terms of time. This indicates that when RLA∗ decides to skip the

computation of the expensive heuristic, it is usually the right decision.

Expanded Generated

hLA 183,320,267 1,184,443,684

lmcut 23,797,219 114,315,382

A∗
MAX 22,774,804 108,132,460

selmax 54,557,689 193,980,693

LA∗ 22,790,804 108,201,244

RLA∗ 25,742,262 110,935,698

Table 7.5: Total Number of Expanded and Generated States

Table 7.5 shows the total number of expanded and generated states over all com-

monly solved problems. LA∗ is indeed as informative as A∗
MAX (the small difference

is caused by tie-breaking), while RLA∗ is a little less informed and expands slightly

more nodes. However, RLA∗ is much more informative than its “intelligent” competi-

tor — Sel-MAX, as these are the only two algorithms in our set which selectively omit

some heuristic computations. RLA∗ generated almost half of the nodes compared to

Sel-MAX, suggesting that its decisions are better.
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7.4 Conclusion and Further Research

We discussed a scheme for decreasing heuristic evaluation times in LA∗. Compared

to LA∗, RLA∗ allows additional cuts in h2 evaluations, at the expense of being less

informed. However, due to a rational trade-off, this allows for an additional speedup,

and RLA∗ achieves the best overall performance in our domains.

In addition, RLA∗ is simpler to implement than its direct competitor, selective

max, but its decision can be more informed. When RLA∗ has to decide whether to

compute h2 for some node n, it already knows that f1(n) ≤ C∗. By contrast, although

selective max uses a much more complicated decision rule, it chooses which heuristic

to compute when n is first generated, and does not know whether h1 will be informative

enough to prune n. RLA∗ outperforms selective max in our planning experiments.

There are numerous other ways to use rational metareasoning to improve A∗, start-

ing from generalizing RLA∗ to handle more than two heuristics, to using the meta-

level to control decisions in other variants of A∗, such as IDA∗. All these potential

extensions provide fruitful ground for further research.
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Chapter 8

Insights into Methodology

In this chapter, we summarize our experience of applying rational metareasoning to

search problems. One should treat the recommendations provided here as general

guidelines to improving search algorithms rather than as strict instructions. Design-

ing better algorithms is an art, even when based on the solid foundation of rational

metareasoning.

8.1 Assessing Applicability of Rational Metareasoning

The first question raised by a metareasoning researcher facing a new problem is whether

a solution would benefit at all from applying rational metareasoning. In most cases, an

existing algorithm involving heuristic evaluation of search states justifies an attempt to

perform the heuristic computations selectively, based on the value of information. As a

rule of thumb, rational metareasoning is beneficial for optimizing heuristic evaluation

in algorithms where:

1. Ubiquitous heuristic evaluation of the search space decreases the total search

time.

2. The heuristic computation time constitutes a significant part of the total search

time.

3. No simple heuristic rule for selective evaluation (such as only in the proximity

of the initial state) is known to bring a significant improvement.
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Conversely, there are two important cases where rational metareasoning is unlikely

to result in an improvement, according to our current state of knowledge about the

method:

• On the one hand, if the heuristic relies on pre-computed data [CS98, FHK11],

and online evaluation is cheap at the expense of intensive offline computation

performed ahead of time for a wide range of problem instances, computing the

heuristic selectively is unlikely to save the total search time. For example, pat-

tern databases [CS98] proved to be an efficient approach for building informative

and fast heuristics. 15-puzzle is one of domains in which pattern databases are

particularly powerful [FHK11]; when a PDB is already built, evaluating a state

requires just a small number of table lookups, so it does not makes sense to try

and compute the heuristic selectively.

• On the other hand, in the case of an informative but very expensive heuristic

evaluating the heuristic is likely to make the search algorithm slower in most

cases, and the algorithm must rely on domain-specific knowledge to identify the

states in which computing the heuristic is beneficial. Such fine domain-specific

knowledge is usually hard to derive from a model that results in an efficiently

computable value of information estimate. One example is high-accuracy solu-

tion counting algorithms, mentioned in Chapter 5, which are too time-consuming

to be used in a value-ordering heuristic, unless a fine-tuned domain-specific de-

cision rule is used.

Of course, this criterion does not cover all possible situations where rational metar-

easoning is helpful, but provides a good starting point for assessing applicability of the

metareasoning approach to a given problem domain.

8.2 Identifying the Relevant Metareasoning Decisions

For a successful realization of the rational metareasoning layer it is important to iden-

tify the metareasoning decision that can be useful in practice. Determining the choices

available at the decision points, and benefits and costs associated with each of the

choices is not always simple. For example, in Chapter 6, “VOI-aware MCTS”, the

originally considered decision was whether to continue sampling or to commit to a
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move. This model facilitated derivation of VOI estimates for simple regret in Multi-

armed bandits (Section 6.2). However, we succeeded in improving the Go agent only

after realizing that for sampling in trees the alternative is to either continue sampling

or to commit to a move and possibly spend the unused samples at the selected child of

the current state (Section 6.3.2).

Likewise, in RLA∗ (Chapter 7) the decision is whether to compute the expensive

heuristic h2 in the current node n or to bypass the evaluation and compute h2 in all

children of n, as though the algorithm resorts to plain LA∗. Earlier attempts to derive a

metareasoning rule that compares the benefit of pruning the subtree due to computing

h2 with the cost of traversing the subtree did not result in a faster algorithm.

One way to ensure robustness of an algorithm AMR with the metareasoning level

is to start with an efficient non-metareasoning algorithm A and implement metarea-

soning decisions inAMR as choices between either behaving provably better thanA or

resorting toA. RLA∗ in Chapter 7, which is based on LA∗, and MAC with VOI-driven

solution-counting value-ordering heuristic in Chapter 5, which improves on MAC with

ubiquitous solution counting are examples of this technique.

8.3 Formulating a Utility and Information Model

Decision-making of the rational metareasoning approach is based on the notions of

state utility and value of information of computational and base-level actions. A more

complicated utility function does not necessarily bring additional benefits:

• A complicated function is more expensive to compute, and metareasoning com-

putations tend to increase the total search time. Chapter 4, “Rational Compu-

tation of Value of Information”, suggests some ways to leverage the costs of

computations at the metareasoning level when an expensive utility function is

absolutely necessary, but, as the case studies in Chapters 5– 7 show, even simple

utility functions may result in considerable improvements.

• A utility model is often overly complicated because the algorithm designer tried

to squeeze into the model domain-specific heuristic knowledge. However, metar-

easoning decisions that implicitly depend on heuristic knowledge impair the idea

of rational metareasoning as an abstraction and hinder reasoning about the algo-

rithm.
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Estimating the value of information of actions involves maintaining beliefs about

probabilities of action outcomes. In some cases, such as applying RLA∗ to planning

problems [TBS+13], guessing prior beliefs and updating them based on obtained evi-

dence is possible and even necessary. In other cases, such as the MAC algorithm for

constraint satisfaction problems (Chapter 5), the beliefs can be constructed from the

analysis of the algorithm under assumptions about the structure of the search space.

Yet in other applications, such as the selection problem (Chapter 6), prior beliefs are

not easily obtainable. An alternative to maintaining beliefs is estimating the value of

information based on distribution-independent bounds derived from concentration in-

equalities; Section 6.2 serves as an example of this approach. An additional benefit of

bound-based VOI estimates is robustness of metareasoning decisions which would be

otherwise compromised by inadequate prior beliefs.

8.4 Parameter Tuning

Most algorithms with the meta-reasoning level developed in the course of the case

studies depend on a few parameters. These parameters affect the algorithm perfor-

mance and must be properly tuned for satisfactory results. Seemingly, the need to

adjust the algorithm parameters contradicts the idea of rational metareasoning as a

systematic approach based on essential features of the search problem rather on ad

hoc adaptions. A significant common trait though is that in our case the parameters

reflect the implementation specifics of the algorithm and the heuristics rather than fea-

tures of problem instances. Due to that, parameter values obtained on a small training

set remain valid, for the given algorithm implementation and heuristics, over a wide

range of problem variations.

8.5 Analyzing the Results of Intermediate Empirical

Evaluation

Empirical evaluation is an indispensable part of developing an application of the ra-

tional metareasoning approach to a given problem. Analysis of the empirical perfor-

mance of the algorithm facilitates verifying and improving the metareasoning model.

Still, misleading results are frequent in the assessment of efficiency of the rational
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metareasoning approach. Such assessment involves comparing real search times that

are influenced by inevitable noise of the computer facilities, but even more by features

of a particular problem domain or test set.

For example, the empirical comparison of VOI-aware MCTS to UCT in the context

of Computer Go (Section 6.3.3) was initially in favor of UCT, in contradiction to earlier

results on randomly generated trees, where VOI-aware MCTS was considerably better.

This contradiction helped us realize the influence of sample reuse (Section 6.3.2) and

to introduce VOI-based stopping and sample redistribution into the algorithm.

Another example is the analysis of RLA∗ (Section 7.3). Applying RLA∗to 15-

puzzle and to planning problems commands different decision rules, because in 15-

puzzle the time required to compute h1 is negligible compared to the open list manip-

ulation time, while in planning both heuristics are expensive to compute. 15-puzzle

could also be used, in addition to evaluation on established planning problem sets, to

analyze efficiency of the approach in the planning domain using the appropriate deci-

sion rule, but in the latter case the empirical results had to be processed accordingly,

by extracting just the heuristic computation times. Different domain-specific algorithm

implementations and heuristics commanded different meta-reasoning decision rules.
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Chapter 9

Summary and Contribution

Rational metareasoning is a powerful theory that achieves a search algorithm that is

optimal in its use of resources. However, due to practical difficulties, the theory has

seen relatively little application to real search problems to date. This research consid-

ered advancements in theory and practical methodology of the rational metareasoning

approach in the context of problem-solving search.

The thesis comprises two major topics:

1. Rational computation of value of information (Chapter 4).

2. Case studies of application of rational metareasoning to selection and application

of heuristic computations (Chapters 5–7).

The first topic addressed cases in which estimating the value of information is

expensive, and explored the trade-off between the accuracy of estimating VOI and

computational resources used for the estimation. The research, published in [TS12b],

resulted in an improvement to a widely used class of VOI-based optimization algo-

rithms that allows a decrease in the computation time while only slightly affecting the

reward. Theoretical analysis of the proposed approach to rational computation of the

value of information was supported by empirical evaluation of several combinations

of algorithms and search problems.

The second topic applied the rational metareasoning approach to several search

problems and improved some well-known algorithms for solving the problems:

• Adaptive deployment of value-ordering heuristics in constraint satisfaction prob-

lems (Chapter 5) [TS11];
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• Monte Carlo tree search based on simple regret (Chapter 6) [TS12a, HRTS12];

• Decreasing heuristic evaluation time in a variant of A* (Chapter 7) [TBS+13].

In addition to the algorithm improvements, the studies demonstrated a number of com-

mon rational metareasoning techniques that can be extended to other problem types.

In particular,

• Chapter 6, “VOI-aware Monte-Carlo tree search” provided distribution-independent

upper bounds for semi-myopic VOI estimates in Monte-Carlo sampling.

• Chapter 7, “Towards rational deployment of Multiple Heuristics in A*”, intro-

duced a novel area of application of rational metareasoning—optimal search in

optimization problems.

As a whole, the research advanced the use of rational metareasoning in problem-

solving search algorithms. Applications of rational metareasoning in the case studies

serve as examples to help researchers employ the methodology in solutions for other

problems. Advances in rational computation and estimation of VOI increase perfor-

mance and applicability of existing and new search algorithms and alleviate depen-

dence of algorithm performance on manual fine-tuning.

The field of rational metareasoning still poses serious challenges. An important yet

unanswered question is the extent to which algorithm performance can be improved

due to employment of the metareasoning approach. In the case studies presented in

the thesis, the improvements, while they approached the theoretical limits of each par-

ticular algorithm variant, were moderate. It is still not clearly understood whether

a dramatic breakthrough in performance is possible if more elaborated models of

utility and information are used, or if the limitations are inherent to the approach itself.

Rational metareasoning where action costs and state utilities are not commensu-

rable is also an interesting field of research. Instead of mapping between different

measures, as suggested in Chapter 4, a more general combination function should

probably be used for best results. Ways of choosing or deriving such a function still

remain to be discovered. Yet another direction worth pursuing is offline analysis of the

metareasoning problem. Up until now, rational metareasoning was employed almost

exclusively in on-line decisions. A novel approach, capable of combining preprocessed

off-line information about the search algorithm and the problem domain with on-line

decision making, may result in a more efficient approximate solution of the rational

meta-reasoning problem.

82



Bibliography
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ומשחקים, מרקוב לתהליכי מתקדמים לאלגוריתמים בסיס מהווה בעצים מונטה־קרלו דגימת

מדיניות שונים. יישום בתחומי האלגוריתמים בביצועי לשיפור יוביל דגימה במדיניות שיפור לכן

מוצעת זה, במחקר רציונלי. הסק־על של העקרונות את ננצל אם להתקבל יכולה יותר טובה דגימה

אלגוריתם בניסויים, דגימות. של VOI על עליונים חסמים סמך על החלטות קבלת עם מדיניות

מבוסס על המדיניות החדשה ניצח אלגוריתמים קיימים גם בבעיות אקראיות, גם במשחק גו.

במקרה .A* אלגוריתם של בגרסאות קרובות לעתים משתמשים שונים בתחומים תכנון בבעיות

שמנסים ,Lazy A*ו־ Selective MAX כמו אלגוריתמים, קיימים אחת מהיורסטיקה יותר של

,Lazy A* לאלגוריתם שיפור מציע זה מחקר החיפוש. את ליעל מנת על ההיוריסטיקות את לשלב

ערך סמך על מתקבלת יותר היקרה ההיוריסטיקה את לחשב האם ההחלטה המשופר כשבאלגוריתם

מגוון על יותר גבוהה יעילות מפגין ,Rational Lazy A* המשופר, האלגוריתם החישוב. של המידע

שלו, הישיר המתחרה מאשר למימוש קל יותר Rational Lazy A* בנוסף, תכנון. בעיות של רחב

.Selective MAX

יישומי בעיות. לפתרון חיפוש באלגוריתמי רציונלי הסק־על של שימוש קידם בכללותו המחקר

להפעיל לחוקרים לעזור שעשויות דוגמאות מהווים שונות בסוגיות רציונלי הסק־על של העקרונות

של לשיפור מועילים מידע ערך של רציונלי בחישוב הישגים נוספים. בתחומים גם המתודולגיה את

אלגוריתמים קיימים ופוטרים מפתחים של אלגוריתמים חדשים מצורך בכוונון ידני חוזר.



תקצירתקציר

פועל בודד סוכן בעיות לפתרון בחיפוש מלאכותית. בבינה החשובים התחומים מן אחד הוא חיפוש

אילוצים, סיפוק מסלול, ומציאת ניווט כמו רבות, בעיות למטרה. להגיע כדי ניטרלית בסביבה

שמיועדים כלליים חיפוש אלגוריתמי ידועים חיפוש. כבעיות לייצג ניתן פונקציות, של אופטימיזציה

של הביצועים את משמעותית לשפר ניתן גיסא, מחד שונות. בעיות של רחב מגוון עם לשימוש

האלגוריתם של המותאמת הגרסה גיסא, מאידך מסוים. בעיות לסוג התאמתו בידי נתון אלגוריתם

בתכנון שהושקע הרב והמאמץ פותחה, שעבורו בעיות של הסוג אותו על רק יעילה להיות עלולה

האלגוריתם לא יבוא לידי שימוש בתחומים אחרים.

והפעלה שילוב באמצעות קרובות לעתים נוצרות כלליים אלגוריתמים של מיוחדות גרסאות

באילו מחליט האלגוריתם את שמפתח המומחה כלל, בדרך היוריסטיקות. של סלקטיבית

ובעיה. בעיה כל על היוריסטיקות להפעיל וכיצד מסוים בעיות סוג עם להשתמש היוריסטיקות

של אוטומטית בהתאמה מסייעים (rational metareasoning) רציונלי הסק-על עקרונות

היוריסטיקות לבעיות שונות.

שהותאמו אלגוריתמים על בביצועיהם שעולים רציונליים אלגוריתמים של דוגמאות ידועות

של יותר נרחב שימוש מעכבים יישומי ניסיון חוסר וגם תאורטיים מכשולים גם אבל מומחה, בידי

שימוש מזמן לא עד ראה לא רציונלי הסק־על מזה, כיוצא חיפוש. בבעיות רציונלי הסק-על שיטות

כן כמו רציונלי, הסק-על של התאוריה את לקדם נועד זה מחקר חיוניות. חיפוש בבעיות משמעותי

לנתח סוגיות אחדות ביישום אלגוריתמי חיפוש הרציונליים.

VOI של חישוב חישוביות. פעולות של (VOI) מידע ערך של יעיל אומדן סוגית נבחנת בפרט,

אלגוריתם. של צעד בכל קרובות לעתים מתבצעים רבים VOI וחישובי בהסק־על, מרכזי מקום תופס

ידוע. חמדן לאלגוריתם שיפור מציע זה מחקר יעיל. יהיה VOI שחישוב ביותר חשוב לכך, אי

במקרים רק מחושב VOI המשופר באלגוריתם הבסיסי, באלגוריתם VOI של הגורף החישוב לעומת

תוך רציונלי, הסק־על של העקרונות לפי מתקבלת מקרה בכל VOI לחשב האם וההחלטה מסוימים,

המשופר האלגוריתם הנדרשים. החישוביים המשאבים עלות לבין VOIה־ של האומדן דיוק בין איזון

של חישובים עלות בהם במקרים ביותר בולט כשיתרונו יעיל, ונמצא מדידות בחירת בעיית על נבדק

גבוהה, וחישוב רציונלי מעלה משמעותית את הרווח הכולל. VOI

סיפוק של בתחומים חיפוש אלגוריתמי של רציונליות גרסאות מציע זה מחקר עיקרי חלק

אילוצים, דגימת מונטה־קרלו בעצים, ותכנון אופטימלי.

הגישה ערכים. לסידור היוריסטיקות של גמישה להפעלה מודל המחקר מציע אילוצים בסיפוק

סלקטיבי, באופן מופעלות קיימות היוריסטיקות חדשות; היוריסטיקות מציעה לא כאן המוצגת

פתרונות, מספר אומדן על מבוססת היוריסטיקה על בוצעו ניסויים שלהן. המידע לערך בהתאם

ושיפור מובהק אובחן בהשוואה לאלגוריתם שמחשב את ההיוריסטיקה תמיד.



  לשיפוט     הדוקטור     עבודת     הגשת     עם     המחקר     תלמיד     הצהרת

סמן): בזאת: (אנא מצהיר/ה מטה החתום אני

מנחה/ים. מאת שקיבלתי ההדרכה עזרת בעצמי, להוציא חיבורי את ___  חיברתי

.  מחקר     תלמיד/ת     היותי     מתקופת מחקרי פרי הינו זו בעבודה הנכלל המדעי ___  החומר

טכנית עזרה אחרים, למעט עם שיתוף פרי שהוא מחקרי חומר נכלל ___  בעבודה

 שותפי ותרומת תרומתי על הצהרה בזאת מצורפת כך ניסיונית. לפי בעבודה הנהוגה

בהסכמתם. ומוגשת ידם על למחקר, שאושרה

___________ _______________  חתימה התלמיד/ה ________   שם תאריך



בהדרכת נעשתה העבודה

שמעוני שלמה אייל פרופסור

המחשבבמחלקה למדעי

הטבעבפקולטה למדעי



בעיות-הסק לפתרון בחיפוש רציונלי על
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מאת

טולפיןדוד

בנגב גוריון בן אוניברסיטת לסינאט הוגש
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